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Abstract

Designing a lightweight and robust portrait segmenta-

tion algorithm is an important task for a wide range of

face applications. However, the problem has been consid-

ered as a subset of the object segmentation and less han-

dled in this field. Obviously, portrait segmentation has its

unique requirements. First, because the portrait segmen-

tation is performed in the middle of a whole process, it

requires extremely lightweight models. Second, there has

not been any public datasets in this domain that contain

a sufficient number of images. To solve the first problem,

we introduce the new extremely lightweight portrait seg-

mentation model SINet, containing an information block-

ing decoder and spatial squeeze modules. The informa-

tion blocking decoder uses confidence estimation to recover

local spatial information without spoiling global consis-

tency. The spatial squeeze module uses multiple receptive

fields to cope with various sizes of consistency. To tackle

the second problem, we propose a simple method to create

additional portrait segmentation data, which can improve

accuracy. In our qualitative and quantitative analysis on

the EG1800 dataset, we show that our method outperforms

various existing lightweight models. Our method reduces

the number of parameters from 2.1M to 86.9K (around

95.9% reduction), while maintaining the accuracy under

an 1% margin from the state-of-the-art method. We also

show our model is successfully executed on a real mobile

device with 100.6 FPS. In addition, we demonstrate that our

method can be used for general semantic segmentation on

the Cityscapes dataset. The code and dataset are available

in https://github.com/HYOJINPARK/ExtPortraitSeg.

Figure 1. Accuracy (mIoU) vs. complexity (number of parame-

ters) on the EG1800 validation set. Our proposed SINet has high

accuracy with small complexity.

1. Introduction

Developing algorithms targeting face data has been con-

sidered as an important task in the computer vision field,

and many related vision algorithms including detection,

recognition, and key-point extraction are actively studied.

Among them, portrait segmentation is commonly used in

real-world applications such as background editing, secu-

rity checks, and face resolution enhancement [19, 29], giv-

ing rise to the need for fast and robust segmentation models.

The challenging point of the segmentation task is that

the model has to solve two contradictory problems simulta-

neously; (1) Handling long-range dependencies or global

consistency and (2) preserving detailed local information.

Figure 2 shows two common segmentation errors. First, the

blue blob in Figure 2 (b) is classified as a foreground, even

though it is easily recognized as a wood region. The rea-
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(a) Input image (b) Typical segmentation errors

(c) Ground truth (d) Example of Ours

Figure 2. Typical examples of segmentation errors. (b) The wood

region is failed to be suppressed, and the boundary of the boy’s

hair is not sharply segmented. (d) Our method solves the problem

without heavy computation.

son for this problem is that the segmentation model fails to

get global context information, which prevents wrong rep-

resentation. Second, the red blobs in Figure 2 (b) show the

model’s failure to accurately segment fine details. The lat-

eral part of hair needs fine segmentation due to its small

size and similar color to the wood. The model is not able

to produce a sharp segmentation image because of the lack

of detail information about hair. This is because of the us-

age of the stride length of the convolution or pooling layer.

These techniques induce the model can capture global in-

formation by enlarging receptive field size. However, the

local information might be destroyed.

Researchers have developed several strategies to solve

these problems, and the first one is to produce multiple

receptive fields for each layer. This multi-path structure

is able to enhance both global and local information but

comes at the cost of increased latency due to fragmented

parallel operations [10]. Another method is using a two-

branch network, which consists of a deeper branch that is

employed to produce global context and a shallow branch

that preserves detailed local features by keeping high res-

olution [16, 17, 27]. Even though the shallow branch has

few convolutional layers, it is computationally heavy due to

its high-resolution feature maps. Also, this method has to

extract features two times, once for each branch.

The portrait segmentation problem comes with a set of

additional challenges. The first one being the small amount

of available data. The EG1800 dataset [19], an accessible

public portrait segmentation dataset, contains only around

1,300 training images, and has large biases with regard to

attributes such as race, age, and gender. Second, portrait

segmentation is usually used just as one of several steps in

real-world applications. Since many of these applications

run on mobile devices, the segmentation model needs to be

lightweight to ensure real-time speeds. Researchers have

developed plenty of lightweight segmentation methods, but

most of them are still not enough for portrait segmentation

tasks. For example, PortraitNet [29], the current state-of-

the-art model on the EG1800 dataset, has 2.1M parame-

ters. A few examples of general lightweight segmentation

models are ESPNetV2 [11] with 0.78M parameters, and

MobileNet V3 [6] with 0.47M parameters.

In this paper, we propose a new extremely lightweight

portrait segmentation model called SINet with an informa-

tion blocking decoder and spatial squeeze modules (S2-

module). Furthermore, we collect additional portrait data to

overcome the aforementioned dataset problems. The pro-

posed SINet has 86.9K parameters, achieving 100.6 FPS

in iPhone XS without any low-floating point operations or

pruning methods. Compared with the baseline model, Por-

traitNet, which has 2.1M parameters, the accuracy degrada-

tion is just under 1% on the EG1800 dataset.

Our contributions can be summarized as follows: (1) We

introduce the information blocking scheme to the decoder.

It measures the confidence in a low-resolution feature map,

and blocks the influence of high-resolution feature maps in

highly confident pixels. This prevents noisy information to

ruin already certain areas, and allows the model to focus

on regions with high uncertainty. We show that this in-

formation blocking decoder is robust to translation and can

be applied to general segmentation tasks. (2) We propose

a spatial squeeze module (S2-module), an efficient multi-

path network for feature extraction. Existing multi-path

structures deal with the various size of long-range depen-

dencies by managing multiple receptive fields. However,

this increases latency in real implementations, due to hav-

ing unsuitable structure with regard to kernel launching and

synchronization. To mitigate this problem, we squeeze

the spatial resolution from each feature map by average

pooling, and show that this is more effective than adopting

multi-receptive fields. (3) The public portrait segmentation

dataset has a small number of images compared to other

segmentation datasets, and is highly biased. We propose a

simple and effective data generation method to augment the

EG1800 dataset with a significant amount of images.

2. Related Work

Portrait Application: PortraitFCN+ [19] built a portrait

dataset from Flickr and proposed a portrait segmentation

model based on FCN [9]. After that, PortraitNet proposed

a real-time portrait segmentation model with higher accu-

racy than PortraitFCN+. [13] integrated two different seg-

mentation schemes from Mask R-CNN and DensePose, and

generated matting refinement based on FCN. [5] introduced

a boundary-sensitive kernel to enhance semantic boundary

shape information. While these works achieved good seg-

mentation results, their models are still too heavy for em-

bedded systems.

Global consistency: Global consistency and long range of
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dependencies are critical factors for the segmentation task,

and models without a large enough receptive field will pro-

duce error-prone segmentation maps. One way of creating a

large receptive field is to use large kernels. However, this is

not suitable for lightweight models due to their large num-

ber of parameters. Another method is to reduce the size of

feature maps through downsampling, but this leads to diffi-

culties in segmenting small or narrow objects.

To resolve this problem, dilated convolutions (or atrous

convolutions) have been introduced as an effective solution

to get a large receptive field while preserving localization

information [28, 2], keeping the same amount of computa-

tion as the normal convolution. However, as the dilation rate

is increased the count of valid weights decreases as men-

tioned in [3]. Also, the grid effect degrades the segmen-

tation result with checker-board patterns. Another method

is to use a spatial pyramid structure to get a larger recep-

tive filed and a multi-scale representation with pooling or

dilated convolution [30, 4] To get a multi-scale representa-

tion, some works use a multi-path structure for feature ex-

traction [18, 11, 14]. Each module splits the input feature

map and translates the feature map with a different dilation

rate. This method is well suited for lightweight models, but

suffers from high latency. Recently, the asymmetric non-

local block [31] was proposed, inspired by the non-local

block [23] and spatial pyramid pooing. Because the non-

local block calculates all the pairwise pixel dependencies,

it is computationally heavy. Asymmetric non-local block

approximates the calculation with spatial pyramid pooling.

However, the computational cost is still too large to fit a

lightweight model. Recently, some works adopt average

pooling to reduce complexity more [21, 7].

Detailed local information: Recovering detailed local in-

formation is crucial to generating sharp segmentation maps.

Conventionally, an encoder-decoder structure based on de-

convolution (or transposed convolution) is applied [9, 12].

By concatenating the high-resolution feature, they recover

the original resolution step by step. Also, some works use

global attention for upsampling. The feature pyramid at-

tention [8] uses global pooling to enhance the high reso-

lution feature map from the low-resolution. However, the

attention vector can not reflect the local information well

due to global pooling. Recently, the two-branch method

is suggested for better segmentation. BiSeNet [27], Con-

textNet [16] and FastSCNN [17] designed a two-path net-

work, each branch of which is for global context and de-

tailed information, respectively.

3. Method

In this section, we explain the structure of the proposed

SINet which consists of a Spatial squeeze module (S2-

module) and an Information blocking decoder. S2-module

handles global consistency by using the multi-receptive

field scheme, and squeezes the feature resolution to miti-

gate the high latency of multi-path structures. The informa-

tion blocking decoder is designed to only take the necessary

information from the high-resolution feature maps by utiliz-

ing the confidence score of the low-resolution feature maps.

The information blocking in the decoder is important for in-

creasing robustness regarding translation (Section 3.1) and

the S2-module can handle global consistency without heavy

computation (Section 3.2). We also demonstrate a simple

data generation framework to solve the lack of data in two

situations: 1) having human segmentation ground truths and

2) having only raw images (Section 3.4).

3.1. Information Blocking Decoder

An encoder-decoder structure is the most commonly

used structure for segmentation. An encoder extracts se-

mantic features of the incoming images according to se-

mantic information, and a decoder recovers detailed local

information and resolution of the feature map. For design-

ing the decoder, bilinear upsampling or transposed convo-

lution upsampling blocks are commonly used to expand the

low-resolution feature maps from the encoder. Also, recent

works [18, 14, 6, 4] re-use additional high-resolution feature

maps from the encoder to make more accurate segmentation

results. To the best of our knowledge, most studies take all

the information of high-resolution feature maps from the

encoder by conducting concatenation, element-wise sum-

mation, or by enhancing high-resolution feature maps via

attention vectors from low-resolution. However, using the

high-resolution feature maps means that we give nuisance

local information, which is already removed by the encoder.

Therefore, we have to take only the necessary clue and avert

the nuisance noise.

Here, we introduce a new concept of a decoder structure

using information blocking. We measure the confidence

score in the low-resolution feature map and block the infor-

mation flow from the high-resolution feature into the region

where the encoder successfully segmented with high confi-

dence. The information blocking process removes nuisance

information from the image and makes the high-resolution

feature map concentrate only on the low confidence regions.

Figure 3 shows the overall architecture of SINet and the

detailed process of the information blocking decoder. The

model projects the last set of feature maps of the encoder

to the size of the number of classes by a pointwise con-

volution and uses a bilinear upsampling to make the same

resolution as the high-resolution target segmentation map.

The model employs a softmax function to get a probability

of each class and calculates each pixel’s confidence score c

by taking maximum value among the probabilities of each

class. Finally, we generate an information blocking map

by computing (1 − c). We perform pointwise multiplica-

tion between the information blocking map and the high-
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(a)

Figure 3. The overall architecture of SINet. The S2-module is the bottleneck in SINet and the information blocking decoder makes fine

segmentation results. DSConv+SE means depthwise separable convolution with a Squeeze-and-Excitation block.

Figure 4. From left to right, (a) an input image, (b) an information

blocking map, (c) a confidence map of last block in model and

(d) the segmentation results from the proposed method. The infor-

mation blocking map helps to prevent inflow of nuisance features,

and makes the model focus more on regions with high uncertainty.

resolution feature maps. This ensures that low confidence

regions get more information from the high-resolution fea-

ture maps, while high confidence regions keep their original

values in the subsequent pointwise addition operation.

Figure 4 (b) is an example of the information blocking

map, and (c) is the confidence map from the model output.

As shown in Figure 4 (b), the boundary and clothing have

high uncertainty while the inner parts of the foreground and

background already have a high confidence score. This in-

dicates that the high uncertainty regions need more detailed

local information to reduce uncertainty. However, the inner

parts of the face, such as the beard and nose, do not need to

get more local information for making a segmentation map.

If the local information was embedded, it could be harm-

ful to the global consistency due to nuisance information as

noise. In the final confidence map of the model (Figure. 4

(c)), the uncertainty region of the boundary has shrunk, and

the confidence score of the inner part is highly improved.

3.2. Spatial Squeeze module

A multi-path structure has an advantage of high accuracy

with less parameters [21, 20, 20, 25], but it suffers from

Dilated rate rate=2 rate=6 rate=12 rate=18

Latency (ms) 6.7 6.63 11.84 12.03

Table 1. Latency running depthwise separable dilated convolution

with different dilation rates on an iPhone XS. The input size is

128 × 120 × 120. Additional experiments with other input sizes

are reported in the supplementary material.

increased latency proportional to the number of sub-paths

[10]. The proposed spatial squeeze module (S2-module) re-

solves this problem and Figure 5 shows the structure. We

utilize average pooling for adjusting the size of the recep-

tive field and reducing the latency.

The S2-module is also following a kind of split-

transform-merge scheme like [18, 11, 14] for covering

multi-receptive field with two spatial squeeze blocks (S2-

block). First, we use a pointwise convolution to reduce the

number of feature maps by half. For further reduction of

computation, we use a group pointwise convolution with

channel shuffle. The reduced feature maps pass through

each S2-block, and the results are merged through concate-

nation. We also adopt a residual connection between the in-

put feature map and the merged feature map. Finally, PRelu

is utilized for non-linearity.

For S2-block, we select average pooling rather than di-

lated convolution for making a multi-receptive field struc-

ture for two reasons. First, the latency time is affected

from the dilated rate, as shown in Table 1, and dilated con-

volution can not be free from the problem of grid effects

[14, 22]. Second, the multi-path structure is not friendly to

GPU parallel computing [10]. Thus, we squeeze the resolu-

tion of each feature map to avoid the sacrifice of the latency

time. The S2-block squeezes the resolution of a feature map

by an average pooling, with kernel size up to 4. Then, a
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(a) Spatial Squeeze Block (S2-block). C, H , and W denotes the number of channels, an image width and height respectively.

(b) Spatial Squeeze Module (S2-module).

Figure 5. (a) An input feature map is squeezed by an N ×N average pooling before a depthwise convolution. Then, a bilinear upsampling

recovers the original input resolution of the feature maps. (b) The S2-module has multi-receptive structures by using different combinations

of convolution kernels and pooling for the S2-blocks.

Input Operation Output

1 3 × 224 × 224 CBR 12 × 112 × 112 Down sampling

2 12 × 112 × 112 DSConv+SE 16 × 56 × 56 Down sampling

3 16 × 56 × 56 SB module 48 × 56 × 56 [k=3, p=1], [k=5, p=1]

4 48 × 56 × 56 SB module 48 × 56 × 56 [k=3, p=1], [k=3, p=1]

5 64 × 56 × 56 DSConv+SE 48 × 28 × 28 Concat [2, 4], Down sampling

6 48 × 28 × 28 SB module 96 × 28 × 28 [k=3, p=1], [k=5, p=1]

7 96 × 28 × 28 SB module 96 × 28 × 28 [k=3, p=1], [k=3, p=1]

8 96 × 28 × 28 SB module 96 × 28 × 28 [k=5, p=1], [k=3, p=2]

9 96 × 28 × 28 SB module 96 × 28 × 28 [k=5, p=2], [k=3, p=4]

10 96 × 28 × 28 SB module 96 × 28 × 28 [k=3, p=1], [k=3, p=1]

11 96 × 28 × 28 SB module 96 × 28 × 28 [k=5, p=1], [k=5, p=1]

12 96 × 28 × 28 SB module 96 × 28 × 28 [k=3, p=2], [k=3, p=4]

13 96 × 28 × 28 SB module 96 × 28 × 28 [k=3, p=1], [k=5, p=2]

14 144 × 28 × 28 1x1 conv #class × 28 × 28 Concat [5, 13]

Table 2. Detailed settings for the SINet encoder. k denotes the

kernel size of the depthwise convolution and p denotes the kernel

size of average pooling the S2-block.

depthwise separable convolution with the kernel size 3 or

5 is used. Between the depthwise convolution and the

pointwise convolution, we use a PRelu non-linear activa-

tion function. Empirically, placing the pointwise convolu-

tion before or after the bilinear upsampling does not have a

critical effect on the accuracy. Therefore, we put it before

the bilinear upsampling to further reduce computation. We

also insert a batch normalization layer after the depthwise

convolution and the bilinear upsampling.

3.3. Network Design for SINet

In this part, we explain the overall structure of SINet.

SINet uses S2-modules as bottlenecks and depthwise sep-

arable convolution (ds-conv) with stride 2 for reducing the

resolution of feature maps. Empirically, applying the S2-

module with stride 2 for downsampling improves accuracy,

but we found that it has longer latency time than S2-module

with stride 1 under the same output size conditions. There-

fore, for downsampling, instead of the S2-module with

stride 2, we use ds-conv with Squeeze-and-Excite blocks.

For the first bottleneck we use two sequential S2-modules

and for the second bottleneck we use eight. The detailed

setting of the S2-module is described in Table 2. We add a

residual connection for each bottleneck, concatenating the

bottleneck input with its output. A 3×3 convolution is used

for classification and finally bilinear upsampling is applied

to recover the original input resolution.

We found that a weighted auxiliary loss for the boundary

part is helpful in improving the accuracy. The final loss is

as follows:

B = (f ⊕ y∗)− (f ⊖ y∗)

Loss = CEi∈P(y
∗
i , ŷ) + λCEj∈B(y

∗
j , ŷj).

(1)

Here, f is a 15 × 15 filter used for the morphological di-

lation (⊕) and erosion (⊖) operations. P denotes all the

pixels of the ground truth, and B denotes the pixels in the

boundary area as defined by the morphology operation. y∗

is a binary ground truth value and ŷ is a predicted label from

a segmentation model. λ is a hyperparameter that controls

the balance between the loss terms.

3.4. Data Generation

Annotating data often comes with high costs, and the

annotation time per instance varies a lot depending on the
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task type. For example, the annotation time per instance

for PASCAL VOC is estimated to be 20.0 seconds for im-

age classification and 239.7 seconds for segmentation, an

order of magnitude difference as mentioned in [1] . To mit-

igate the cost of annotation for portrait segmentation, we

consider a couple of plausible situations: 1) having images

with ground truth human segmentation. 2) having only raw

images. We make use of either an elaborate face detector

model (case 1) or a segmentation model (case 2) for gener-

ating pseudo ground truths to each situation.

When we have human images and ground truths, the only

thing we need is a bounding box around the portrait area.

We took images from Baidu dataset [24], which contains

5,382 human full body segmentation images covering var-

ious poses, fashions and backgrounds. To get the bound-

ing box and portrait area, we detect the face location of the

images using a face detector [26]. Since the face detector

tightly bounds the face region, we increase the bounding

box size to include parts of the upper body and background

before cropping the image and ground truth segmentation.

We also create a second augmentation from portrait im-

ages scraped from the web, applying a more heavyweight

segmentation model to generate pseudo ground truth seg-

mentation masks. This segmentation model consists of a

DeepLabv3+ [4] architecture with a SE-ResNeXt-50 [25]

backbone. The model is pre-trained on ImageNet and fine-

tuned on a proprietary dataset containing around 2,500 fine

grained human segmentation images. The model is trained

for general human segmentation rather than for the specific

purpose of portrait segmentation.

Finally, human annotators just check the quality of each

pseudo ground truth image, removing obvious failure cases.

This method reduces the annotation effort per instance from

several minutes to 1.25 seconds by transforming the seg-

mentation task into a binary classification task.

4. Experiment

We evaluated the proposed method on the public dataset

EG1800 [19], which collected images from Flickr with

manually annotated labels. The dataset has a total of 1, 800
images and is divided into 1, 500 train and 300 validation

images. However, we could access only 1,309 images for

train and 270 for validation, since some of the URLs are

broken. We built an additional 10,448 images using the pro-

posed data generation method mentioned in Section 3.4.

We trained our model using ADAM optimizer with ini-

tial learning rate to 7.5e−3, and weight decay to 2e−4, for

a total of 600 epochs. We followed the data augmentation

method in [29] with 224×224 images. We used a two-stage

training method;for the first 300 epochs, we only trained

the encoder with the batch size set to 36. Then, we ini-

tialize the encoder with the best parameters from the previ-

ous step, and trained the overall SINet model for an addi-

tional 300 epochs with the batch size to 24. We evaluated

our model followed by various ablations using mean inter-

section over union (mIoU) and F1-score in the boundary

part, and compared with SOTA portrait segmentation mod-

els including other lightweight segmentation models. To

define the boundary region, we subtract the eroded ground

truths from the dilated ground truths, using a kernel with

size 15× 15. We demonstrated the robustness of the infor-

mation blocking decoder on randomly rotated EG1800 vali-

dation images, and the importance of multi-receptive struc-

ture on EG1800 validation images in Section 4.2 Also, we

showed that the proposed method can be used for general

tasks by evaluating it on the Cityscapes dataset.

4.1. Evaluation Results on the EG1800 Dataset

We compared the proposed model to PortraitNet[29],

which has SOTA accuracy in the portrait segmentation field.

Since some sample URLs in the EG1800 dataset are miss-

ing, we re-trained the PortraitNet following the original

method in paper and using the official code on the remain-

ing samples in EG1800 dataset. PortraitNet compared their

work to BiseNet and Enet. Therefore, we also re-trained

BiSeNet and ENet following the method of PortraitNet for a

fair comparison. As shown in Table 3, the accuracies of the

re-trained models are slightly decreased due to the reduced

size of the training dataset. We measured latency time on

an Intel Core i5-7200U CPU environment with the PyTorch

framework on an LG gram laptop.

Among the compared methods, DS-ESPNet has the

same structure as ESPNet, with only changing the standard

dilated convolutions of the model into depth-wise separa-

ble dilated convolutions. For ESPNetV2 (2.0) and ESP-

NetV2 (1.5), we changed the number of channels of the con-

volutional layers to reduce the model size as following offi-

cial code. We also reduced the number of channels for the

convolutions in the DS-ESPNet (0.5) by half from the orig-

inal model to make it less than 0.1M parameters and 0.2G

FLOPs. The original ContextNet used 4 pyramid poolings

but we used only 3 due to the small feature map size.

From Table 3, we see that our proposed method achieved

comparable or better performance than the other models,

while having less parameters and FLOPs, and higher FPS.

The SOTA PortraitNet showed the highest accuracy in all

the experimental results, and has achieved even better per-

formance than the heavier BiSeNet. However, PortraitNet

requires a large number of parameters, which is a disadvan-

tage for using it on smaller devices. The proposed SINet has

reduced the number of parameters by 95%, and FLOPs by

80% compared to PortraitNet, while maintaining accuracy.

ESPNet and ESPNet V2 have similar accuracy, but showed

a trade-off between the number of parameters and FLOPs.

ESPNet V2 has more parameters than ESPNet, but ESP-

Net needs more FLOPs than ESPNet V2. Enet shows better
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Method Parameters (M) FPS FLOPs (G) F1-score mIOU mIOU [29]

Enet (2016) [15] 0.355 8.06 0.346 0.917 95.16 96

BiSeNet (2018) [27] 0.124 2.99 2.31 0.908 94.91 95.25

PortraitNet (2019)[29] 2.08 3.30 0.325 0.919 95.99 96.62

ESPNet (2018)[18] 0.345 6.99 0.328 0.883 94.65 -

DS-ESPNet 0.143 7.75 0.199 0.866 94.10 -

DS-ESPNet(0.5) 0.064 9.26 0.139 0.859 93.58 -

ESPNetV2(2.0) (2019)[11] 0.778 3.65 0.231 0.872 94.71 -

ESPNetV2(1.5) (2019)[11] 0.458 4.95 0.137 0.861 94.00 -

ContextNet12 (2018)[16] 0.838 1.55 1.87 0.896 95.71 -

MobileNetV3 (2019)[6] 0.458 10.87 0.066 0.854 94.19 -

SINet(Ours) 0.087 12.35 0.064 0.884 94.81 -

SINet+(Ours) 0.087 12.35 0.064 0.892 95.29 -

Table 3. EG1800 validation results for the proposed SINet and other segmentation models. DS denotes depth-wise separable convolution.

We measure FPS on an Intel Core 15-7200 CPU environment with input size 224 × 224. The results in the last column are from the

PortraitNet [29] paper. SINet+ is the result of using the augmented dataset as descibed in Section 3.4

Figure 6. Qualitative comparison results on the EG1800 validation dataset.

performance than both models but requires more FLOPs.

In our comparison, the proposed method has less number

of parameters and FLOPs, but still achieved better accuracy

than ESPNet and ESPNet V2. In particular, our SINet has

the highest accuracy in an extremely lightweight environ-

ment. Figure 6 shows that the quality of our model is supe-

rior to other extremely lightweight models.

We compared the execution speed of the proposed model

with SOTA segmentation model MobileNet V3 on an

iPhone XS using the CoreML framework. MobileNet V3

has 60.7 FPS, and our SINet has 100.6 FPS. The FLOPs

in MobileNet V3 and SINet are similar, but SINet is much

faster than MobileNet V3. We conjecture that the SE block

and h-swish activation function are the main reasons for the

increase in latency in MobileNet V3. In summary, the pro-

posed SINet showed outstanding performance among the

various segmentation model in terms of accuracy and speed.

4.2. Ablation Study

Information blocking decoder: Table 4 shows the ac-

curacy improvement from using the information blocking

decoder. We randomly rotated validation images and eval-

uated mIOU over the whole image. Reverse IB denotes

that we multiply the high-resolution feature maps with the

confidence score c instead of (1− c), thus enhancing high-

confident pixels rather than low-confidence ones. Remove

IB means that we did not use any information blocking,

and instead conducted element-wise summation between

the low-resolution feature maps and the high-resolution fea-

ture maps from a middle layer of an encoder. GAU [8]
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Figure 7. Confidence maps of the last features from the model and

segmentation results according to the decoding method.

Org 25◦ 45◦ 75◦ 90◦

IB 94.81 88.62 84.74 79.05 76.85

Reverse IB 94.68 84.06 80.58 73.88 73.09

Remove IB 94.74 85.11 81.53 75.36 72.99

GAU [8] 94.77 86.33 82.80 75.85 73.96

Table 4. mIOU results when using random rotations (−x
◦

∼ x
◦).

Org denotes original validation image without any translation. IB

denotes using information blocking map and Reverse IB enhances

high-confidence regions rather than low-confidence ones.

uses global pooling to enhance high-resolution feature map

from low-resolution feature map before applying element-

wise summation. GAU has better performance than Reverse

IB and Remove IB, but it still fails to get a tight boundary

and to get better performances in translated images than IB.

From the result, we can see that the information blocking

decoder shows outstanding performance compared to the

other methods. Qualitatively, it prevents segmentation er-

rors of the background region as shown in Figure 7.

Multi-receptive field: Table 5 shows the performance de-

pending on the multi-receptive structures. SINet used vari-

ous combinations of kernel sizes for convolution and pool-

ing. We re-designed the S2-module to always use the same

kernel sizes within the S2-block for all convolutional and

pooling layers respectively. As shown in Table 5, our SINet

achieved higher mIOU and F1-score than the other combi-

nations. Therefore, a multi-receptive field structure has an

advantage for accuracy than a single-receptive field one.

4.3. General Segmentation Dataset

We also demonstrate that our proposed method is suit-

able not only for the binary segmentation problem but also

for general segmentation problems by testing the model

on the Cityscapes dataset. We increased the number of

layers and channels a little bit to cope with the increased

complexity compared to the binary segmentation task, and

we factorized the depthwise convolution in the S2-blocks

for reducing the number of parameters. Here, SINet has

only 0.12M parameters and 1.2GFLOPs for input of size

2048×512, but our model showed better accuracy than any

Convolution Pooling mIOU f1-score

3 1 93.40 0.874

3 2 93.34 0.851

3 4 90.34 0.796

5 1 94.56 0.881

5 2 93.11 0.857

5 4 90.04 0.799

SINet (Ours) 94.81 0.884

Table 5. Ablation study for the S2-module. Our multi-receptive

structure achieved better accuracy than the other settings.

Param(M) FLOP(f) FLOP(h) mIOU

ESPNet 0.36 - 4.5 61.4

ContextNet14 0.85 5.63 - 66.1

ESPNetV2 0.79 - 2.7 66.2

MobileNetV2(0.35) 0.16 2.54 - 66.83(val)

MobileNetV3-small 0.47 2.9 - 69.4

SINet (Ours) 0.12 1.2 - 66.5

Table 6. Semantic segmentation results on the Cityscapes test set.

FLOP(f) means that the number of FLOPs was measured with full-

resolution input, 2048 × 1024. FLOP(h) denotes that the number

of FLOPs was measured with half-resolution, 1024× 512.

other lightweight segmentaiton model except MobileNet

V3 and MobileNet V2. The accuracy of SINet decreases

by 2.9% with respect to MobileNet V3, but the number of

parameters and FLOPs are much lower than MobileNet V3.

5. Conclusion

In this paper, we proposed an extremely lightweight por-

trait segmentation model, SINet, which consists of an in-

formation blocking decoder and spatial squeeze modules.

SINet executes well in mobile device with 100.6FPS and

has high accuracy with 95.29. The information blocking de-

coder prevents nuisance information from high-resolution

features and induces the model to concentrate more on high

uncertainty regions. The spatial squeeze module has multi-

receptive field to handle the various sizes of global consis-

tency in an image. We also proposed a simple data gener-

ation framework covering the two situations: 1) having hu-

man segmentation ground truths 2) having only raw images.

Not only on the specific portrait dataset but also on the gen-

eral segmentation dataset, our model obtained outstanding

performance compared to the existing lightweight segmen-

tation models from the experiments. The proposed method

shows appropriate accuracy (66.5 %) with only 0.12M num-

ber of parameters and 1.2G FLOP on the Cityscapes dataset.
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