
Published as a conference paper at ICLR 2023

SELF-SUPERVISED SET REPRESENTATION LEARNING
FOR UNSUPERVISED META-LEARNING

Dong Bok Lee1∗ Seanie Lee1∗ Kenji Kawaguchi2 Yunji Kim3 Jihwan Bang3
Jung-Woo Ha3 Sung Ju Hwang1

KAIST1, National University of Singapore2, NAVER3

{markhi, lsnfamily02, sjhwang82}@kaist.ac.kr
{yunji.kim, jihwan.bang, jungwoo.ha}@navercorp.com
kenji@comp.nus.edu.sg

ABSTRACT

Unsupervised meta-learning (UML) essentially shares the spirit of self-supervised
learning (SSL) in that their goal aims at learning models without any human
supervision so that the models can be adapted to downstream tasks. Further, the
learning objective of self-supervised learning, which pulls positive pairs closer and
repels negative pairs, also resembles metric-based meta-learning. Metric-based
meta-learning is one of the most successful meta-learning methods, which learns
to minimize the distance between representations from the same class. One notable
aspect of metric-based meta-learning, however, is that it is widely interpreted as
a set-level problem since the inference of discriminative class prototypes (or set
representations) from few examples is crucial for the performance of downstream
tasks. Motivated by this, we propose Set-SimCLR, a novel self-supervised set
representation learning framework for targeting UML problem. Specifically, our
Set-SimCLR learns a set encoder on top of instance representations to maximize
the agreement between two sets of augmented samples, which are generated by
applying stochastic augmentations to a given image. We theoretically analyze how
our proposed set representation learning can potentially improve the generalization
performance at the meta-test. We also empirically validate its effectiveness on
various benchmark datasets, showing that Set-SimCLR largely outperforms both
UML and instance-level self-supervised learning baselines.

1 INTRODUCTION

One of the most challenging and long-standing problems in machine learning is unsupervised
learning which aims at learning generalizable representations without human supervision, which
can be transferred to diverse downstream tasks. Meta-learning (Finn et al., 2017; Snell et al., 2017)
is a popular framework for learning models that quickly adapt to novel tasks on the fly with few
examples, and thus shares the spirit of unsupervised learning in that it seeks more efficient and
effective learning procedures than learning from scratch. However, the essential difference between
unsupervised learning and meta-learning is that most meta-learning approaches have been built on
a supervised learning scheme and require human-crafted task distributions. In order to tackle this
limitation, several previous works (Hsu et al., 2019; Khodadadeh et al., 2019; 2021; Lee et al., 2021)
have proposed unsupervised meta-learning (UML) frameworks which combine unsupervised learning
and meta-learning. They train a model with unlabeled data such that the model can adapt to unseen
tasks with few labels.

Meanwhile, self-supervised learning (Chen et al., 2020a;b; He et al., 2020; Chen et al., 2020c; 2021;
Grill et al., 2020; Zbontar et al., 2021) (SSL) is rising as a promising learning paradigm to learn
transferable representations from unlabeled data in a task-agnostic manner. These methods rely on
pretext tasks generated from data, and a popular pretext task is to maximize the agreement between
different views of the same image in the latent space. The different views are easily obtained by
sequentially applying pre-defined stochastic augmentations to an image. The main applications of
these SSL methods essentially resemble the problem scenarios of UML, where we aim to transfer
the learned representations to various downstream tasks. Further, the learning objective of SSL
is also closely related to metric-based meta-learning (Ni et al., 2022), which is one of the most

∗Equal contribution

1

Published as a conference paper at ICLR 2023

successful meta-learning methods. Metric-based meta-learning (Snell et al., 2017) learns to minimize
the distance between representations from the same class, while SSL pulls positive pairs closer and
repels negative pairs. This motivates us to design a SSL method for addressing the UML problem.

Most SSL methods have focused on learning meaningful instance visual features. The importance of
the instance feature is clear for generalization to unseen tasks coming with few examples, however, a
meta-learning problem is often interpreted as a set-level problem in the literature of metric-based
meta-learning. It has been widely shown that inference of discriminative class prototypes (or set
representations) from few examples is crucial for the performance of downstream tasks. For example,
Snell et al. (2017) basically takes an average of features belonging to the same class as a prototype (set
representation). Similarly, Gordon et al. (2019); Iakovleva et al. (2020) propose Bayesian framework
to learn stochastic prototypes using multi-layer perceptron and properly reflect uncertainty originating
from few examples. Further, Triantafillou et al. (2019) propose to fine-tune the prototype with
supervised loss. Inspired by the successes of set representation in few-shot learning, we propose a
self-supervised set representation learning framework for UML.

The underlying assumption of SSL is that two different views of an image share most visual semantics.
Built upon this idea, we construct two sets where each set consists of different views of the same
image and maximize the agreement between them. Concretely, we repeatedly apply stochastic
augmentations to each image of the mini-batch multiple times and construct a set consisting of the
augmented images. Then we divide the set by half into two sets which are considered to be a positive
pair of sets. Given a positive set pair, similar to Chen et al. (2020a), the other sets within mini-batch
are considered as negative sets. We use attention-based set encoder (Vaswani et al., 2017; Lee et al.,
2019) to obtain set representations. The set encoder is trained to reduce the distance of positive sets
and increase that of negative sets. We dub our framework Set-SimCLR. At meta-test, we initialize
each row of the weight for a linear classifier with the learned representation of the set composed of
instances belonging to the same class, and the classifier is then optimized with supervised loss.

We motivate our algorithmic design of Set-SimCLR based on theoretical analysis. Specifically, we
study how our set representation can potentially improve the final performance and the reason why
we use set representations as the initialization of classifier weights. We then empirically validate our
Set-SimCLR by comparing it against four UML methods and four instance-level SSL methods. We
find that our method outperforms the baselines on six benchmark datasets, including Mini-ImageNet
(Ravi & Larochelle, 2017), Tiny-ImageNet (Le & Yang, 2015), CIFAR100 (Krizhevsky et al., 2009),
Aircraft (Maji et al., 2013), Stanford Cars (Krause et al., 2013) and CUB (Wah et al., 2011) datasets.

We summarize our contributions as follows:

• We introduce Set-SimCLR framework for solving unsupervised meta-learning problem, which
learns both instance and set representations for downstream tasks.

• We provide a theoretical motivation of Set-SimCLR and study how the set representation potentially
improves few-shot classification performance.

• The proposed Set-SimCLR outperforms the previous UML baselines and self-supervised learning
baselines by significant margins in all the datasets we consider.

2 RELATED WORK

Unsupervised Meta-Learning (UML) To tackle the limitation of supervised meta-learning, several
UML works have been proposed to construct pseudo-tasks for meta-training by clustering data
on an unsupervised embedding space (Hsu et al., 2019), data augmentation (Khodadadeh et al.,
2019), or harvesting synthetic data from the latent space of generative models (Khodadadeh et al.,
2021). Contrary to the works focusing on generating pseudo tasks, Meta-GMVAE (Lee et al., 2021)
introduces a Mixture of Gaussian priors by performing Expectation-Maximization during the meta-
training and the meta-test. To our knowledge, none of the existing works have proposed to tackle
UML with self-supervised set representation learning, although Lee et al. (2021); Ericsson et al.
(2021) use a backbone network pretrained with instance-level SSL objective.

Set Representation DeepSets (Zaheer et al., 2017) independently processes elements and ag-
gregates them with either min, max, mean or sum operation to obtain permutation invariant set
encoding. To tackle the lack of expressiveness of Deepsets, Set Transformer (Lee et al., 2019) utilize
self-attention to model the pairwise interaction of elements in a set. Instead of designing a more

2

Published as a conference paper at ICLR 2023

expressive neural architecture for set encoding, several methods are proposed to learn set representa-
tion by minimizing the distance between an input set and a trainable reference set using a bipartite
matching (Skianis et al., 2020), an optimal transport (Mialon et al., 2020; dan Guo et al., 2022),
or Wasserstein embedding (Kolouri et al., 2020). Note that our self-supervised set representation
learning framework is agnostic to any set encoding and any of them can be utilized for ours.

Self-supervised Learning Recently, a large volume of works has proposed self-supervised learning
methods. The core idea is the representation of differently augmented views of the same image
should be similar. Note that we introduce just a few of them which we consider as baselines in
our experiments. SimCLR (Chen et al., 2020a;b) is one of the most representative contrastive
frameworks where two views of the same image are pulled together while the negative pairs are
repulsed. MOCO (He et al., 2020; Chen et al., 2020c; 2021) builds a dynamic feature dictionary
using a queue and momentum encoder and learns to minimize contrastive loss from the dictionary.
Meanwhile, several works show that non-contrastive approaches can learn meaningful representation
without a latent feature collapse. For example, BYOL (Grill et al., 2020) leverages two identical
networks where one of them is a momentum encoder to encode different views of images and
minimizes the distance between positive pairs. Barlow Twins (Zbontar et al., 2021) computes a
cross-correlation matrix between a different view of images and optimize it to be close to an identity
matrix. Recently, MAE (He et al., 2022) masks an image and reconstructs the masked input to learn a
meaningful representation of images. In this work, we exploit the effectiveness of self-supervised
learning on UML, especially combined with our proposed set representation learning.

3 METHOD

In this section, we describe problem setting of unsupervised meta-learning (UML) and self-supervised
set representation learning, Set-SimCLR. We depict an overview of our method in Figure 1.

3.1 PROBLEM STATEMENT

For UML problem, we can only access to an unlabeled dataset Du = {xi}Ui=1 for meta-training.
Same as most existing meta-learning works (Finn et al., 2017; Snell et al., 2017), we assume meta-test
data follows the same data distribution of unlabeled dataset Du while having a different set of classes.
At meta-test time, we are given a set of N -way S-shot classification tasks and each task consists of a
support set Ds = {(xs

i , y
s
i)}N×S

i=1 , and a query set Dq = {xq
i }N×Q

i=1 . The final goal is to leverage the
model trained on the unlabeled data to predict labels of the query set with the help of the support set.

3.2 SELF-SUPERVISED CONTRASTIVE LEARNING

Before introducing our method, we first describe one of the most successful self-supervised learning
methods SimCLR (Chen et al., 2020a). SimCLR is a contrastive learning framework that maximizes
agreement between differently augmented views of the same instance in the latent space. Specifically,
it first randomly samples a mini-batch of M images {xm}Mm=1 and obtains two different views of
each image using stochastic data augmentation, resulting in 2M instances {(xm,1,xm,2)}Mm=1. There
are two components: 1) a base encoder f extracting feature representations and 2) a projection head g
mapping the representation to the latent space where the contrastive loss is applied. With the encoder
and projection head, the latent representation of each image is obtained as zm,j = g(f(xm,j)). Then,
the contrastive loss for the mini-batch of M images is defined as

LSimCLR ({(zm,1, zm,2)}Mm=1

)
= − 1

2M

M∑
m=1

log
exp(sim(zm,1, zm,2)/τ)∑

j,k 1[zk,j ̸=zm,1]exp(sim(zm,1, zk,j)/τ)

+ log
exp(sim(zm,2, zm,1)/τ)∑

j,k 1[zk,j ̸=zm,2]exp(sim(zm,2, zk,j)/τ)
,

(1)

where sim is a measure of similarity (e.g., cosine similarity) and 1[zk,j ̸=zm,1] ∈ {0, 1} is an indicator
function. The temperature τ > 0 is a hyperparameter controling the sharpness of the distribution.

3.3 SELF-SUPERVISED SET REPRESENTATION LEARNING WITH SIMCLR
Existing self-supervised learning has focused on instance-level visual features. The importance of the
instance-level features is clear for generalization on unseen tasks, however, a meta-learning problem
is often interpreted as a set-level problem rather than instance-level. For example, Snell et al. (2017)

3

Published as a conference paper at ICLR 2023

Instance Reps.

split

H1,1 H1,2

H2,1 H2,2

H3,1 H3,2

s1,1 s1,2

s2,1 s2,2

s3,1 s3,2

Set Reps.

h2,𝑣 1

𝑉

h1,𝑣 1

𝑉

h3,𝑣 1

𝑉

Base
Encoder

𝑓

minimize −
g(h)Tg(h’)

g(h) ⋅ |g(h’)|

minimize −
𝑔(𝑠)T𝑔(𝑠′)

𝑔 𝑠 ⋅ |𝑔(𝑠’)|

Set-level Loss

Instance-level Loss

s1

s2

s3

Meta Test

Initial W0

minimize 𝐿ce(𝐷
s; W0)

Support Set 𝐷s

𝜑

Set
Encoder

𝜑

Head
𝑔

split

split

Figure 1: (Left): A conceptual illustration of Set-SimCLR with three images. We first encode each augmented
image into instance representation using the base encoder f . Then we partition the set of V augmented images
into two sets and obtain set representations with the set encoder φ. We finally compute set- and instance-level
loss. We additionally minimize the cross loss in Eq. 3, which is abbreviated in this figure. (Right): At meta-test,
we use set representation of each class as an initialization of linear classifier weight.

takes the average of features belonging to the same class as a prototype (or a set representation),
or Gordon et al. (2019); Iakovleva et al. (2020) propose Bayesian framework to learn stochastic
prototypes using multi-layer perceptron. Further, Triantafillou et al. (2019) propose to fine-tune a
prototype with a supervised loss. Inspired by the successes, we propose a self-supervised contrastive
learning framework for learning set representation to more effectively address UML problems.

Set Representation The underlying assumption of self-supervised learning methods is that two
different views of an image share most of the visual semantics. We extend this idea to set-level
representation by constructing two sets where each set consists of multiple different views of the same
image and maximizing agreement between the two sets. Specifically, we repeatedly apply stochastic
augmentations to an image for V times and construct a set {xm,v}Vv=1 for each image of a mini-batch,
where V is an even number. Then we independently encode each augmented image with the base
encoder f to obtain instance-level feature representations hm,v = f(xm,v) ∈ Rd for m = 1, . . . ,M
and v = 1, . . . , V , where d is the dimension of the feature representation. This results in M different
sets of instance-level representations Hm = {hm,v}Vv=1 for m = 1, . . . ,M . Then we divide each set
Hm by half to obtain positive pairs of sets, i.e., Hm,1 = {hm,v}V/2

v=1 and Hm,2 = {hm,v}Vv=V/2+1,
and get a set representation by applying a set encoder to each set. Any permutation-invariant set
encoder that takes a set of vectors as an input and outputs a vector can be employed. Here, we design
a set encoder with self-attention for better representation:

Tm,j = TransformerEncoder(Hm,j) ∈ RV/2×d

sm,j = MLP(concat (mean(Tm,j); std(Tm,j); max(Tm,j); min(Tm,j))) ∈ Rd,
(2)

and we define a set encoding function φ : Hm,j ∈ RV/2×d 7→ sm,j ∈ Rd. For
TransformerEncoder, we use the multi-head self-attention mechanism proposed by Vaswani et al.
(2017); Lee et al. (2019). Please see Appendix A for more detail. We take the row-wise operations
on the outputs Tm,j ∈ RV/2×d of TransformerEncoder to compute mean, standard deviation,
maximum and minimum (denoted as mean, std, max and min), where each results in a d-dimensional
vector. Then we concatenate them, denoted as concat, which is a 4d-dimensional vector, and feed it
into multi-layer perceptron MLP to obtain the final set representation sm,j ∈ Rd.

Contrastive Loss for Set Representation Learning We now obtain positive pair of set represen-
tations sm,1 and sm,2, by applying the set encoder in Eq. 2 to each set Hm,1 and Hm,2. Following
self-supervised literature, we project this set representation into the latent space with the same head g
used for instance-level feature learning. Finally, we compute set-level contrastive loss by plugging
the projected set representations into Eq. 1, i.e., LSimCLR({(g(sm,1), g(sm,2)}Mm=1). The difference
between our loss and SimCLR loss is that instead of instance-level representation, we pull positive
pair of set-level representation and repulse the negative set pairs. Further, we introduce a cross loss
that regularizes the subspace of instance- and set-level representations to be shared in the latent space

4

Published as a conference paper at ICLR 2023

as follows: LSimCLR({(g(sm,1), g(hm,2)}Mm=1). Then the final loss is a combination of the set-level
and the instance-level SimCLR losses as follows:

LSimCLR ({(g(hm,1), g(hm,2))}Mm=1

)︸ ︷︷ ︸
Instance-level Loss

+LSimCLR ({(g(sm,1), g(sm,2))}Mm=1

)︸ ︷︷ ︸
Set-level Loss

+ LSimCLR ({(g(sm,1), g(hm,2))}Mm=1

)︸ ︷︷ ︸
Cross Loss

(3)

Linear Evaluation for Downstream Tasks We now describe how we utilize the learned instance-
level and set-level representations on downstream few-shot classification tasks. For a N -way S-shot
task at meta-test time, we are given the support set Ds = {(xs

i , y
s
i)}N×S

i=1 and supposed to predict
the labels of the query set Dq = {xq

i }N×Q
i=1 . We first apply the base encoder f to obtain instance

feature representations of the support set {(hs
i , y

s
i)}N×S

i=1 and the query set {hq
i }N×Q

i=1 . For each class
c = 1, . . . , N , we encode Hs

c = {hs
i | ysi = c}, a set of instances belonging to the class c, with the

mapping φ as described in Eq. 2. Let the set representation of c-th class be sc = φ(Hs
c) ∈ Rd.

We then initialize a weight of a linear classifier with the set representations s1, . . . , sN and train
the classifier with the support set while freezing the base encoder f , which is similar to the linear
evaluation of self-supervised learning (Chen et al., 2020a). We find that this is more suitable for
our few-shot setting than the strategy of finetuning the full model to prevent the risk of overfitting
to few data. Specifically, we initialize the weight W of the classifier by stacking the learned set
representation sc as row vectors, denoted as W0, and optimize it by minimizing the cross-entropy
loss with weight-decay as follows:

minimize
W

LCE(W ;Ds) via algorithm A as W ∗ = A(LCE;W0,Ds)

LCE(W ;Ds) =
1

|Ds|
∑

xs
i ,y

s
i∈Ds

ℓ (Wf(xs
i), y

s
i)

(4)

where W0 = [s1 · · · sN]⊤ ∈ RN×d, ℓ(q, y) = − log
(
exp(qy)/

∑N
k=1 exp(qk)

)
and

A(LCE;W0,Ds) denotes an iterative optimization algorithm with weight-decay and the initial-
ization W0. After the optimization, we predict a label for each instance in the query set Dq as
yqi = argmaxc p

(i)
c , where (p

(i)
1 , . . . , p

(i)
N)⊤ = W ∗f(xq

i). We provide pseudo-code of our meta-
training (self-supervised learning) and meta-test in Appendix B.

Connection to Meta-Learning We further discuss why our set representation boosts generalization
performance in the view of meta-learning. One of the most effective approaches in meta-learning
literature to tackle few-shot learning problems is to learn an initialization and adapt the initialization to
meta-test tasks. For instance, ANIL (Raghu et al., 2019) learns a feature extractor and an initialization
of a linear classifier such that the learned linear classifier can rapidly adapt to the target task while
freezing the feature extractor. ANIL has shown that meta-learning the initialization of the linear
classifier is crucial for improving the generalization performance of meta-test tasks. In this point
of view, Set-SimCLR meta-learns set representations based on the set-level contrastive learning
loss using pseudo tasks constructed by leveraging data augmentation, where different views of an
image belong to the same pseudo-class. Then the meta-learned set representations are utilized as an
initialization which leads to better generalization performance of meta-test tasks. We further provide
theoretical motivation of how our set representation can improve generalization in the next section,
and a detailed relationship to the meta-learning in Appendix D.

3.4 THEORETICAL MOTIVATION

In this section, we provide theoretical motivations on our algorithmic design. In appendix C.1, we
show that the proposed method is equivalent to the metric-based inference with the fine-tuning of
the class prototypes sc, where the initial class prototypes sc are obtained with the set representation
by sc = φ(Hs

c) and each input x is represented by instance-level representation f(x). Thus, in the
following, we discuss how such metric-based inference behaves with respect to the supervised loss in
the downstream task.

To obtain theoretical insights, this section focuses on the binary classification without the head
g and considers the following abstract data-generating process: each of the unknown labels

5

Published as a conference paper at ICLR 2023

y+ and y− is drawn independently from a uniform distribution U on {1, 2}, and then each
of the unlabeled positive examples x+ and x++ is drawn from the conditional distribution
Dy+ conditioned on the label y+ while the negative example x− is drawn from the condi-
tional distribution Dy− . Accordingly, this hidden process forms the joint distribution D(x, y) =

Dy(x)U(y). In this setting, we can write the contrastive unsupervised loss LSimCLR of the rep-
resentation f and the corresponding supervised loss Ls of our classifier Wtf by LSimCLR(f) =

Ey+∼U,y−∼UEx+,x++∼D2
y+ ,x−∼Dy−

[− log(exp(f(x++)⊤f(x+))
exp(f(x++)⊤f(x+))+exp(f(x++)⊤f(x−)))

)] and Lt
s(f) =

E(x,y)∼D[ℓ(Wtf(x), y)] where ℓ(q, y) = − log
(

exp(qy)∑2
k=1 exp(qk)

)
and the matrix Wt ∈ R2×d is de-

fined by Wt = [φ[Hs
1]+(∆⃗t)1, φ[H

s
2]+(∆⃗t)2]

⊤. Here, ∆⃗t = [(∆⃗t)1, (∆⃗t)2]
⊤ = Wt−W0 ∈ R2×d

is the elements added during the training with the support set. Importantly, y+ and y− can be the same
as y+ = y− since we do not know the true labels in the unsupervised loss. This is reflected by the fact
that they are sampled from the same (unknown) probability measure on labels U . We define the train-
ing loss L̂t

s(f) =
1

|Ds|
∑

(xs
i ,y

s
i)∈Ds ℓ(Wtf(x

s
i), y

s
i) and the corresponding training loss with the av-

erage pooling (instead of our set representation) by L̂A
s (f) =

1
|Ds|

∑
(xs

i ,y
s
i)∈Ds ℓ(Af(xs

i), y
s
i) where

A = [Ex∼D1
[f(x)], Ex∼D2

[f(x)]]⊤ ∈ R2×d. Define the probability of y+ and y− being the same
by P(y+ = y−) = Ey+,y−∼U2 [1{y+ = y−}]. Similarly, P(y+ ̸= y−) = Ey+,y−∼U2 [1{y+ ̸= y−}].
We define c = P(y+ ̸= y−)−1 and ζ = c · P(y+ = y−) log(2). Let Lℓ be the Lipschitz constant of
ℓ w.r.t. its first argument. Let Cℓ be upper bounds on ℓ. Define Cf = Ex[∥f(x)∥22]. The following
theorem provides an upper bound on the expected supervised loss Lt

s(f) in the downstream task:
Theorem 1. Let ∆t ∈ R≥0 and suppose that Wt satisfies ∥Wt −W0∥F ≤ ∆t. Then, for any δ > 0,
with probability at least 1− δ,

Lt
s(f) ≤ cLSimCLR(f)− ζ log(2)− γ̂t +∆t

√
16L2

ℓCf

|Ds| + 2Cℓ

√
ln(2/δ)

2|Ds| . (5)

where γ̂t = L̂A
s (f)− L̂t

s(f) and ∥·∥F denotes Frobenius norm.

The proof is deferred to appendix C.2. Theorem 1 shows that we can minimize the expected supervised
loss Lt

s(f) by minimizing the contrastive loss LSimCLR(f) and training loss L̂t
s(f). As we increase

t ∈ N0, the value of γ̂t = L̂A
s (f) − L̂t

s(f) increases since L̂t
s(f) decreases in t while L̂A

s (f) is a
constant in t. However, increasing t can also increase ∆t in Theorem 1. Thus, there is a tradeoff
of γ̂t v.s. ∆t. At t = 0, we have ∆t = 0. As we increase t, both γ̂t and ∆t tend to increase. Here,
if |Ds| is very large, then an optimal strategy would be to increase t towards infinity, because the
term of ∆t is O(∆t/

√
|Ds|). However, when |Ds| is small, we do not want to increase ∆t too much.

Thus, Theorem 1 predicts that we should conduct fine-tuning to control the tradeoff between γ̂t and
∆t with the initialization obtained through the unsupervised meta-learning step. We can see in the
definition of ∆t that the initialization matters to avoid increasing ∆t too much while increasing γ̂t.

4 EXPERIMENT

In this section, we empirically validate the effectiveness of our set representation learning framework
on several downstream few-shot classification tasks, and compare our Set-SimCLR against UML
baselines and instance-level self-supervised baselines in subsection 4.1 and 4.2, respectively.

4.1 COMPARISON TO UNSUPERVISED META-LEARNING

Dataset We use the Mini-ImageNet dataset introduced by Ravi & Larochelle (2017), which is a
subset of ILSVRC-2012 (Deng et al., 2009). It consists of 100 classes and each class contains 600
different images. We use the resolution of 3× 84× 84, which is widely used in the meta-learning
literature. We use 64 classes for unsupervised meta-training, 16 classes for meta-validation, and the
remaining 20 classes for meta-test. Following the standard protocol of unsupervised meta-learning,
we evaluate our method on 1000 randomly sampled tasks from the meta-test set.

Baselines We compare Set-SimCLR with four UML methods as the baselines: 1) CACTUs (Hsu
et al., 2019), 2) UMTRA (Khodadadeh et al., 2019), 3) LASIUM (Khodadadeh et al., 2021) and 4)
Meta-GMVAE (Lee et al., 2021). In addition, we provide the performance of two supervised meta-
learning methods as “oracles”: MAML (oracle) (Finn et al., 2017) and ProtoNets (oracle) (Snell
et al., 2017). The detailed explanation of the baselines is in Appendix F.

6

Published as a conference paper at ICLR 2023

Table 1: Results for 5-way S-shot classification on Mini-ImageNet. The base encoder is either Conv4 or Conv5.
We report mean and standard deviation of accuracy evaluated on 1000 episodes with 5 different runs for ours.
Note that we take the accuracy of baselines from the previous works Khodadadeh et al. (2021); Lee et al. (2021).

Method Clustering 1-shot 5-shot 20-shot 50-shot

Training from Scratch N/A 27.59 38.48 51.53 59.63

CACTUs-MAML BiGAN 36.24 51.28 61.33 66.91
CACTUs-ProtoNets BiGAN 36.62 50.16 59.56 63.27
CACTUs-MAML ACAI/DC 39.90 53.97 63.84 69.64

CACTUs-ProtoNets ACAI/DC 39.18 53.36 61.54 63.55
UMTRA N/A 39.93 50.73 61.11 67.15

LASIUM-MAML-RO/N N/A 40.19 54.56 65.17 69.13
LASIUM-ProtoNets-RO/N N/A 40.05 52.53 59.45 61.43

Meta-GMVAE N/A 42.82 55.73 63.14 68.26

Set-SimCLR (ours) N/A 43.36 ±.34 58.68 ±.43 69.12 ±.17 73.91 ±.36

MAML (oracle) N/A 46.81 62.13 71.03 75.54
ProtoNets (oracle) N/A 46.56 62.29 70.05 72.04

Mini Tiny CIFAR100 Aircraft Cars CUB
30

35

40

45

50

55

60

65

70

Te
st

 A
cc

. (
%

)

SimCLR
MOCO
BYOL
Barlow Twins
Set-SimCLR (ours)

(a)
1-shot 5-shot 20-shot 50-shot

40

50

60

70

80

Te
st

 A
cc

. (
%

)

(b)
Figure 2: (a): 5-way 5-shot classification results on six datasets. (b): 5-way 1, 5, 20, 25-shot classification
results on Mini-ImageNet dataset. The base encoder is ResNet-18. We report mean and standard deviation of
accuracy evaluated on 1000 episodes with 5 different runs. See Appendix L for the results in tabular format.

Implementation Details We use Conv5 architecture as the base encoder for the fair comparison.
We provide the details of neural architectures for base encoder, set encoder and head in Appendix H.
We follow SimCLR (Chen et al., 2020a;b) for random augmentation, which is detailed in Appendix J.
We apply the composed augmentations to 64 mini-batch images eight times (i.e., M = 64, V = 8),
resulting in 4 elements in each set. We optimize the base encoder, set encoder and head network for
400 epochs using Adam optimizer (Kingma & Ba, 2015) with default settings (i.e., β1 = 0.9 and
β2 = 0.999). We use constant learning rate of 0.001. For downstream tasks, we use L-BFGS (Liu &
Nocedal, 1989) algorithm implemented in scikit-learn (Pedregosa et al., 2011) package to optimize a
linear classifier.

Results Table 1 shows the performance of the baselines and our Set-SimCLR for 5-way 1, 5, 20 and
50-shot classification on the Mini-ImageNet dataset, where Set-SimCLR outperforms all the baselines
by considerable margins. For an instance, it achieves +0.54%,+2.95%,+3.95%, and +4.27%
performance improvement over the best performing baseline on 1- 5-, 20- and 50-shot settings.
Notably, the performance gain of Set-SimCLR over the baselines gets larger as we increase the
number of instances for a support set, i.e., shot. We can observe the similar pattern when comparing
MAML-variant and ProtoNet-variant within baselines, e.g., CACTUs-MAML vs CACTUs-ProtoNets
and LASIUM-MAML-RO/N vs LASIUM-ProtoNets-RO/N. This is because the adaptation with the
support set at meta-test gets more effective since the model is less likely to overfit to larger shot.

4.2 COMPARISON TO SELF-SUPERVISED LEARNING (SSL)

Dataset We use the Mini-ImageNet dataset for training and evaluating models. Further, to verify
the effectiveness of the proposed method on transfer learning scenarios, we evaluate the models
trained with Mini-ImageNet on the conventional meta-test split of Tiny-ImageNet (Le & Yang, 2015),
CIFAR100 (Krizhevsky et al., 2009), Aircraft (Maji et al., 2013), Stanford Cars (Krause et al., 2013)
and CUB (Wah et al., 2011) datasets. See Appendix E for the number of classes of meta-splits for each
dataset. Since all the models are trained on 84× 84 images from the source dataset Mini-ImageNet,
we resize the image to 84× 84 resolution for all the target datasets. Following UML literature, we
evaluate our method on 1,000 randomly sampled tasks from the meta-test set.

7

Published as a conference paper at ICLR 2023

1-shot 5-shot 20-shot 50-shot
40

50

60

70

80

Te
st

 A
cc

. (
%

)

SimCLR
Mean
DeepSet
Rep the Set
Set Transformer
Set-SimCLR (ours)

(a)
1-shot 5-shot 20-shot 50-shot

40

50

60

70

80

Te
st

 A
cc

. (
%

)

SimCLR
of layer = 0
of layer = 1
of layer = 2
of layer = 3

(b)

2 3 4 5 6 7 8
Cardinality of Set (V/2)

1

2

3

4

5

6

7

8

 T
es

t A
cc

. (
%

) w
.r.

t S
im

C
LR

50-shot
20-shot
5-shot
1-shot

(c)
Figure 3: The results of ablation study on the 5-way 1, 5, 20, 50-shot classification using Mini-ImageNet.
We study the effectiveness of (a): different set encoder architectures, (b): the depth of TransformerEncoder
layers, and (c): the number of set elements w.r.t SimCLR. We report the results over 3 different random seeds.

Baselines Although there are a vast number of SSL methods, in this work, we want to show the
effectiveness of SSL compared to learning instance representation. Thus, we choose following
four representative contrastive SSL baselines as follows: 1) SimCLR (Chen et al., 2020a;b), 2)
MOCO (He et al., 2020; Chen et al., 2020c; 2021), 3) BYOL (Grill et al., 2020), 4) Barlow
Twins (Zbontar et al., 2021). All the details are deferred to Appendix F. Note that we have
tried a very recent SSL method — MAE (He et al., 2022), however, it fails to achieve comparable
performance to ours and baselines. Please see details in Appendix G.

Implementation Details For the base encoder f , we use ResNet-18 architecture (He et al., 2016)
which is widely used for evaluating self-supervised learning methods. For a fair comparison, we use
the same architecture of head network g, for all SSL methods except for MOCO since MOCO does
not use the head. For our method Set-SimCLR, we apply the augmentations (which is defined in
Appendix J) 8 times to the mini-batch of 64 images (i.e., M = 64, V = 8), resulting in 4 elements
in each set, while performing the same augmentation twice on the mini-batch of 256 images (i.e.,
M = 256, V = 2) for the baselines. Following SSL literature, we train a linear classifier for
downstream tasks using scikit-learn package with default settings. We provide more implementation
details in Appendix I.

Results Figure 2a shows 5-way 5-shot experimental results of all the models on the Mini-ImageNet,
Tiny-ImageNet, CIFAR100, Aircraft, Stanford Cars, CUB datasets. We can see that Set-SimCLR
outperforms all the SSL baselines by considerable margins, from +0.17% to +2.71%. The results
of Set-SimCLR in the transfer learning scenario, one of the important goals of the self-supervised
learning methods, is particularly remarkable. We further evaluate ours and baselines over various
shots, e.g., 1-, 10-, 20 and 50-shot on the Mini-ImageNet. As shown in Figure 2b, our Set-SimCLR
obtains outstanding performance gains of 7.31%, 2.71%, 2.02%, 1.96% over the best performing
baselines on 1-, 10-, 20-, 50-shot settings. Notably, that performance gain of Set-SimCLR is much
larger in 1-shot setting than the other shots. It shows that SSL baselines are vulnerable to overfitting
to the single shot. In contrast, the classifiers obtained by Set-SimCLR shows much robustness in the
1-shot setting due to the initialization with learned set representations.

4.3 ABLATION STUDY AND ANALYSIS

In this subsection, we conduct ablation studies to verify a necessity of each components. We further
provide analysis on our Set-SimCLR in comparison to SSL baselines.

Set Encoder Architecture We replace the architecture of the set encoder described in Eq. 2
with mean pooling, Deep Set (Zaheer et al., 2017), Rep the Set (Skianis et al., 2020), or Set
Transformer (Lee et al., 2019). Figure 3a shows the 5-way 5-shot test accuracy of different set
encoder architectures on the Mini-ImageNet dataset. We find that Rep the Set architecture works
well on 1-shot setting, and our set encoder φ in Equation 2 shows slightly better performance
on 5-, 20- and 50-shot settings than the others. Note that our Set-SimCLR is set representation
learning framework that is agnostic to the choice of set encoder architecture. Furthermore, even
with the simplest architecture (mean pooling), it still shows slightly better performance than the
best-performing self-supervised baseline (SimCLR) which is denoted as dotted lines.

The Depth of Set Encoder Another important compoment of our model is the number of
TransformerEncoder layers in Equation 2. First, we start without TransformerEncoder layer,
i.e., identity function, and increase the depth of the set encoder. Figure 3b shows the 5-way 5-shot
test accuracy on the Mini-ImageNet dataset with varying the number of layers. We find that the set

8

Published as a conference paper at ICLR 2023

100 200 300 400 500 600 700 800
of Epochs

50

55

60

65

70

Te
st

 A
cc

. (
%

)

SimCLR
MOCO
BYOL
Barlow Twins
Set-SimCLR (ours)

(a) (b)
2-way 5-way 10-way 20-way

0

20

40

60

80

Te
st

 A
cc

. (
%

)

SimCLR
MOCO
BYOL
Barlow Twins
Set-SimCLR (ours)

(c)
Figure 4: Analysis of the proposed Set-SimCLR on the Mini-ImageNet dataset. (a): 5-way 5-shot test accuracy
of baselines as a function of training epochs. (b): T-SNE visualization of our adaptation process on a 5-way
5-shot task. (c): 5-shot test accuracy of different ways. We report the results over 3 different runs.

encoder with a single layer is the most effective on the overall settings considering the computational
cost due to extra layers. Note that all of our models with the different number of layers outperform
the best performing self-supervised baseline (SimCLR) which is denoted as dotted lines.

Cardinality of Set In order to study effects of the number of set elements for Set-SimCLR, we plot
5-way 5-shot test accuracy improvement over SimCLR, denoted as ∆ Test Acc., as a function of the
cardinality of set. In Figure 3c, the performance of the downstream tasks is not sensitive to the size
of sets, which results in consistent improvement over SimCLR with all the cardinality we consider.

Training Budgets Analysis It approximately takes twice longer to train our Set-SimCLR than the
baselines, since it requires multiple stochastic augmentations to construct a set (Please see wall-clock
time in Appendix K). Then one may wonder whether the baseline can be comparable or even better
if we train it with similar computational budgets to ours. To address this question, we train the
self-supervised learning baselines for 800 epochs, which is twice larger than the before, and observe
test accuracy over training. Figure 4a shows the 5-way 5-shot test accuracy of self-supervised learning
baselines on the Mini-ImageNet dataset. We find that the our Set-SimCLR evaluated at 400 epochs
largely outperforms the self-supervised baselines for all the training budgets we consider.

Qualitative Analysis on Adaptation of Set Representation We now qualitatively analyze the
adaptation process of our set representation at meta-test time. To do so, we visualize the set
representations before and after the adaptation (i.e., each row of the classifier weight W0 and W ∗),
and instances from support and query set. We normalize all the examples to be length 1 and
project them to 2d space with T-SNE (Van der Maaten & Hinton, 2008). Figure 4b shows instance
representation from query and support set and set representations, denoted as circle, cross and star,
respectively. We represent arrows as the adaptation process of set representation, and the color stands
for each class. We find that the set representation is not that discriminative at the beginning, however,
it represents each class very well after the adaptation. This shows the necessity of our proposed
adaptation process of set representation to achieve better performance of the downstream tasks.

Accuracy with Various Ways We finally conduct experiments to show the performance of each
model with varying the way of meta-test tasks. Figure 4c shows the 2-, 5-, 10- and 20-way 5-shot test
accuracy of the self-supervised learning baselines and ours on the Mini-ImageNet dataset. We find
that our Set-SimCLR consistently outperforms the baselines on all the way we consider here.

5 CONCLUSION

In this paper, we proposed self-supervised set representation learning framework for unsupervised
meta-learning (UML). Our Set-SimCLR learns set representation by maximizing the agreement
between positive sets in latent space, where the positive sets are constructed with repeated stochastic
augmentations of an image. Based on theoretical analysis, we studied how the learned set representa-
tion can improve generalization ability and why it makes sense to initialize of the weight of linear
classifier with the learned set representation for downstream tasks. We further validated the empirical
efficacy of proposed Set-SimCLR and compared it against UML and self-supervised baselines using
several benchmark few-shot classification datasets. Note that our main idea of minimizing distance
between semantically similar sets constructed with repeated augmentations is not limited to SimCLR
framework. Based on this, we plan to expand our framework to various self-supervised learning
methods to exploit their potential merits.

9

Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We clearly specify implementation details for reproducibility, including data split, baselines for
comparisons, neural architecture, training process and augmentation in Appendix E, F, H, I, and J. In
Supplementary File, we further provide the code for reproducing the main experimental results in
Table 1 and Figure 2. Note that all the numerical results are based on more than three runs. Lastly,
we will release our full code and the checkpoint of models to be publicly available after acceptance.

ACKNOWLEDGEMENTS

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-00075, Artificial Intelli-
gence Graduate School Program(KAIST)), Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2022-0-00713),
KAIST-NAVER Hypercreative AI Center, the Engineering Research Center Program through the
National Research Foundation of Korea (NRF) funded by the Korean Government MSIT (NRF-
2018R1A5A1059921), and Samsung Electronics (IO201214-08145-01).

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding and improving
interpolation in autoencoders via an adversarial regularizer. In International Conference on
Learning Representations, 2019.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
vised learning of visual features. In Proceedings of the European conference on computer vision
(ECCV), pp. 132–149, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020b.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9640–9649, 2021.

Dan dan Guo, Long Tian, Minghe Zhang, Mingyuan Zhou, and Hongyuan Zha. Learning prototype-
oriented set representations for meta-learning. In International Conference on Learning Represen-
tations, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 248–255. IEEE
Computer Society, 2009.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In International
Conference on Learning Representations, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

10

Published as a conference paper at ICLR 2023

Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models
transfer? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5414–5423, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
learning probabilistic inference for prediction. In International Conference on Learning Represen-
tations, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via meta-learning. In Interna-
tional Conference on Learning Representations, 2019.

Ekaterina Iakovleva, Jakob Verbeek, and Karteek Alahari. Meta-learning with shared amortized
variational inference. In International Conference on Machine Learning, pp. 4572–4582. PMLR,
2020.

Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. Unsupervised meta-learning for few-shot
image classification. Advances in neural information processing systems, 32, 2019.

Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, and Ladislau
Boloni. Unsupervised meta-learning through latent-space interpolation in generative models. In
International Conference on Learning Representations, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Soheil Kolouri, Navid Naderializadeh, Gustavo K Rohde, and Heiko Hoffmann. Wasserstein embed-
ding for graph learning. arXiv preprint arXiv:2006.09430, 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Dong Bok Lee, Dongchan Min, Seanie Lee, and Sung Ju Hwang. Meta-GMVAE: Mixture of gaussian
VAE for unsupervised meta-learning. In International Conference on Learning Representations,
2021.

11

Published as a conference paper at ICLR 2023

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pp. 3–17. Springer, 2016.

Grégoire Mialon, Dexiong Chen, Alexandre d’Aspremont, and Julien Mairal. A trainable optimal
transport embedding for feature aggregation and its relationship to attention. arXiv preprint
arXiv:2006.12065, 2020.

Renkun Ni, Manli Shu, Hossein Souri, Micah Goldblum, and Tom Goldstein. The close relation-
ship between contrastive learning and meta-learning. In International Conference on Learning
Representations, 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu,
Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for open-vocabulary
image classification. arXiv preprint arXiv:2111.10050, 2021.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia: an open
source differentiable computer vision library for pytorch. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3674–3683, 2020.

Konstantinos Skianis, Giannis Nikolentzos, Stratis Limnios, and Michalis Vazirgiannis. Rep the
set: Neural networks for learning set representations. In International conference on artificial
intelligence and statistics, pp. 1410–1420. PMLR, 2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances
in neural information processing systems, 30, 2017.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

12

Published as a conference paper at ICLR 2023

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pp. 12310–
12320. PMLR, 2021.

13

Published as a conference paper at ICLR 2023

A TRANSFORMER ENCODER

We describe the TransformerEncoder from Eq. 2 in more detail. Let X ∈ Rn×d be a stack of n
d-dimensional row vectors. Let WQ

j ,WK
j ,WV

j ∈ Rd×dk be weight matrices for self-attention and
let bQj , b

K
j , bVj ∈ Rdk be bias vectors for j = 1, . . . , 4. For encoding the input X , we compute

self-attention as follows:

Q(j) = XWQ
j + 1(bQ1,j)

⊤ ∈ Rn×dk

K(j) = XWQ
j + 1(bK1,j)

⊤ ∈ Rn×dk

V (j) = XWK
j + 1(bVi,j)

⊤ ∈ Rn×dk

A(j)(X) = LayerNorm
(
Q

(j)
1 + softmax

(
Q

(j)
1 (K

(j)
1)⊤/

√
dk

)
V

(j)
1

)
∈ Rn×dk

O(X) = Concat(A(1)
1 (X), . . . , A

(4)
1 (X)) ∈ Rn×d

(6)

where 1 = (1, . . . , 1)⊤ ∈ Rn is a vector of ones, d = 4dk, and softmax is applied for each row. After
self-attention, we add a skip connection with layer normalization (Ba et al., 2016) as follows:

TransformerEncoder(X) = LayerNorm (O(X)) + ReLU
(
WO(X) + 1b⊤

)
(7)

where W ∈ Rd×d, b ∈ Rd.

B ALGORITHM

We provide the pseudo-code for Set-SimCLR described in Section 3.3.

Algorithm 1 Meta-Training for Set-SimCLR

1: Input: Batch size M , constant τ , the number
of augmentations V , augmentation T , and unla-
beled dataset Du

2: while not converged do
3: Sample a mini batch {xm}Mm=1 from Du

4: for m← 1, . . . ,M do
5: for v ← 1, . . . , V do
6: Sample augmentation functions t ∼ T
7: xm,v ← t(xm)
8: hm,v ← f(xm,v)
9: end for

10: Hm,1 ← {hm,v}V/2
v=1

11: Hm,2 ← {hm,v}Vv=V/2+1

12: sm,1 ← φ(Hm,1), sm,2 ← φ(Hm,2)
13: end for
14: L ← LSimCLR

(
{(g(hm,1), g(hm,2))}Mm=1

)
15: L += LSimCLR

(
{(g(sm,1), g(sm,2))}Mm=1

)
16: L += LSimCLR

(
{(g(sm,1), g(hm,2))}Mm=1

)
17: Perform gradient descent on the loss L w.r.t

the parameters of f, g, and φ.
18: end while
19: Output: f, φ

Algorithm 2 Meta-Test for Set-SimCLR

1: Input: Support set Ds = {(xs
i , y

s
i)}N×S

i=1 ,

query set Dq = {xq
i }N×Q

i=1 , a pretrained
encoder f , and a pretrained set encoder φ.

2: W ← 0 ∈ Rd×N

3: U ← {hs
i = f(xs

i) ∈ Rd}N×S
i=1

4: B ← |Ds|
5: while not converged do
6: for c← 1, . . . , N do
7: Hs

c ← {hs
i ∈ U | ysi = c}

8: sc ← φ(Hs
c)

9: W [c, :]← sc
10: end for
11: L ← 1

B

∑B
i=1− log

exp((Whs
i)ys

i
)∑N

k=1 exp((Whs
i)k)

12: Update W to minimize L
with L-BFGS (Liu & Nocedal, 1989).

13: end while
14: for i← 1, . . . , N ×Q do
15: yqi ← argmaxc Wf(xq

i)c
16: end for
17: Output: {yqi }N×Q

i=1
18:
19:
20:

14

Published as a conference paper at ICLR 2023

C ON THEORETICAL MOTIVATION

C.1 ON THE RELATIONSHIP WITH METRIC-BASED INFERENCE

The metric-based inference using the instance-level representation h of x with the class prototypes sc
can be written by

ŷ(x) = argmin
c

d(sc,h).

By choosing the metric to be the negative dot product as d(sc, h) = −s⊤c h, we can write

ŷ(x) = argmin
c
−s⊤c h = argmin

c
− log

exp(s⊤c h)∑
k exp(s

⊤
k h)

= argmin
c

ℓ(softmax(W0f(x)), c),

where the second line follows from the fact that the output of argminc does not change by adding
the constant in c. In other words, the prediction of the metric-based inference with d(sc,h) = −s⊤c h
(without further fine-tuning) is equivalent to the proposed method at the initialization of W0. Thus,
the proposed method can be understood as the metric-based inference with the fine-tuning of the
class prototypes sc based on the support set, where the initial class prototypes sc are obtained by the
set representation and each input x represented by instance-level representation h.

In this view, a naive approach of fine-tuning of the class prototypes sc is to fine-tune the parameters
of φ to minimize − log

exp(s⊤c h)∑
k exp(s⊤k h)

with the support set where sc = φ(Hc). However, since φ has
many parameters, changing φ allows to change sc = φ(Hc) freely without restrictions on the space
of sc. Thus, instead of fine-tuning the parameters of φ, we can directly optimize the values of sc by
initializing sc = φ(Hc) and untying sc from φ(Hc). This is what is done in the proposed algorithm.
This results in the faster computation and the well-behaving convex optimization when compared to
the fine-tuning of parameters of φ.

C.2 PROOF OF THEOREM 1

Proof. We define the performance difference between the average pooling and our set representation
in terms of the expected loss by γ = LA

s (f)− Lt
s(f). Define the function ℓ by

ℓ (q) = log(1 + exp(−q)).
Then,

ℓ
(
f(x++)⊤(f(x+)− f(x−))

)
= log(1 + exp(−f(x++)⊤(f(x+)− f(x−)))

= log

((
1 + exp(−f(x++)⊤f(x+) + f(x++)⊤f(x−))

)
× exp(f(x++)⊤f(x+))

exp(f(x++)⊤f(x+))

)
= log

(
exp(f(x++)⊤f(x+)) + exp(f(x++)⊤f(x−)))

exp(f(x++)⊤f(x+))

)
= − log

(
exp(f(x++)⊤f(x+))

exp(f(x++)⊤f(x+)) + exp(f(x++)⊤f(x−)))

)
.

Thus, we have that

LSimCLR(f) = Ey+∼U
y−∼U

Ex+,x++∼D2
y+

x−∼Dy−

[
ℓ
(
f(x++)⊤(f(x+)− f(x−))

)]
.

Then, from the convexity of ℓ, Jensen’s inequality and the linearity of the expectation, we have that

LSimCLR(f) ≥ Ey+∼U
y−∼U

Ex++∼Dy+

[
ℓ
(
f(x++)⊤(Ex+∼Dy+

[f(x+)]− Ex−∼Dy− [f(x−)])
)]

.

By decomposing the expectation with sums of conditional expectations, conditioned on the event of
y+ = y− and its complement of y+ ̸= y−,

LSimCLR(f) ≥ P(y+ = y−)κ1 + P(y+ ̸= y−)κ2 (8)

15

Published as a conference paper at ICLR 2023

where

κ1 = Ey+∼U
y−∼U

[
Ex++∼Dy+

[
ℓ
(
f(x++)⊤(Ex+∼Dy+

[f(x+)]− Ex−∼Dy− [f(x−)])
)]
| y+ = y−

]
and

κ2 = Ey+∼U
y−∼U

[
Ex++∼Dy+

[
ℓ
(
f(x++)⊤(Ex+∼Dy+

[f(x+)]− Ex−∼Dy− [f(x−)])
)]
| y+ ̸= y−

]
.

For the first term, since y+ = y− inside the loss ℓ, we have that

κ1 = ℓ(0) = log(2) (9)

For the second term,

κ2 = Ey+∼U

[
Ex++∼Dy+

[
ℓ
(
f(x++)⊤(Ex+∼Dy+

[f(x+)]− Ex−∼Dσ(y+)
[f(x−)])

)]]
= E(x,y)∼D

[
ℓ
(
gφ(x)y − gφ(x)σ(y)

)]
+ γ̃ (10)

where gφ(x) = Wtf(x), gA(x) = Af(x), γ̃ = E(x,y)∼D[ℓ
(
gA(x)y − gA(x)σ(y)

)
−

ℓ
(
gφ(x)y − gφ(x)σ(y)

)
] and σ is defined as

σ(y) =

{
1 if y = 2

2 if y = 1,

we have that

ℓ
(
gφ(x)y − gφ(x)σ(y)

)
= log

((
1 + exp(−gφ(x)y + gφ(x)σ(y)

)
× exp(gφ(x)y)

exp(gφ(x)y)

)
= − log

(
exp(gφ(x)y)

exp(gφ(x)y) + exp(gφ(x)σ(y))

)
= − log

(
exp(gφ(x)y)∑2
k=1 exp(gφ(x)k)

)
. (11)

Similarly,

ℓ(gA(x)y − gA(x)σ(y)) = − log

(
exp(gA(x)y)∑2
k=1 exp(gA(x)k)

)
. (12)

By combining equation 10, equation 11, and equation 12,

κ2 = E(x,y)∼D

[
− log

(
exp(gφ(x)y)∑2
k=1 exp(gφ(x)k)

)]
+ γ, (13)

By combining equation 8, equation 9 and equation 13, we have

LSimCLR(f) ≥ P(y+ ̸= y−)

(
E(x,y)∼D

[
− log

(
exp(gφ(x)y)∑2
k=1 exp(gφ(x)k)

)]
+ γ

)
+ P(y+ = y−) log(2)

This implies that
Lt
s(f) ≤ cLSimCLR(f)− ζ log(2) + (Lt

s(f)− LA
s (f)).

By using Hoeffding’s inequality,

P
(
L̂A
s (f)− LA

s (f) ≥ t
)
≤ exp

(
− 2t2∑

(xs
i ,y

s
i)∈Ds(|Ds|−1Cℓ)2

)
= exp

(
−2t2|Ds|

C2
ℓ

)
for all t > 0. Note that E

[
L̂A
s (f)

]
= LA

s (f). Let δ := exp(−2t2|Ds|/C2
ℓ). Then we get t =

Cℓ

√
ln(1/δ)(2|Ds|)−1. In other words, for any δ > 0, with probability at least 1− δ,

L̂A
s (f)− LA

s (f) ≤ Cℓ

√
ln(1/δ)

2|Ds| .

16

Published as a conference paper at ICLR 2023

Thus, for any δ > 0, with probability at least 1− δ,

Lt
s(f) ≤ cLSimCLR(f)− ζ log(2) + (Lt

s(f)− L̂A
s (f)) + Cℓ

√
ln(1/δ)

2|Ds| . (14)

LetWt = {Wt ∈ R2×d : ∥Wt −W0∥F ≤ ∆t}. Then, since Wt ∈ Wt from the assumption on Wt,
by using Lemma 4 of (Pham et al., 2021), for any δ > 0, with probability at least 1− δ, the following
holds:

Lt
s(f) ≤ L̂t

s(f) + 2Rn(Wt) + Cℓ

√
ln(1/δ)

2n
, (15)

where Rn(Wt) = Es,ξ[supW∈Wt

1
n

∑n
i=1 ξiℓ(Wf(xi), yi)], s = ((xi, yi))

n
i=1, n = |Ds|, and

ξ1, . . . , ξn are independent uniform random variables taking values in {−1, 1}.
Given a matrix M ∈ Rm×m′

, let vec[M] ∈ Rmm′
be the vectorization of M . By using Corollary 4

of (Maurer, 2016),

Rn(Wt) ≤
√
2Lℓ

n
Es,ξ

[
sup

W∈Wt

n∑
i=1

2∑
k=1

ξikWkf(xi)

]

=

√
2Lℓ

n
Es,ξ

[
sup

W∈Wt

2∑
k=1

Wk

n∑
i=1

ξikf(xi)

]

=

√
2Lℓ

n
Es,ξ

[
sup

W∈Wt

w⊤h

]
where Wk is the k-th row of W , w = vec[W⊤] ∈ R2d, ξik are independent uniform random variables
taking values in {−1, 1}, h = vec[H] ∈ R2d, and H ∈ Rd×2 with Hjk =

∑n
i=1 ξikf(xi)j . Define

w0 = vec[W⊤
0]. Since Es,ξ

[
w⊤

0 h
]
= w⊤

0 Es,ξ [h] = 0, we have

Rn(Wt) ≤
√
2Lℓ

n
Es,ξ

[
sup

W∈Wt

w⊤h

]
=

√
2Lℓ

n
Es,ξ

[
sup

W∈Wt

w⊤h

]
−
√
2Lℓ

n
Es,ξ

[
w⊤

0 h
]

=

√
2Lℓ

n
Es,ξ

[
sup

W∈Wt

(w − w0)
⊤h

]
Thus,

Rn(Wt) ≤
√
2Lℓ

n
Es,ξ

[
sup

W∈Wt

∥w − w0∥2∥h∥2
]
=

√
2Lℓ∆t

n
Es,ξ[∥h∥2]

Here,

Es,ξ[∥h∥2] = Es,ξ

√√√√ d∑
j=1

2∑
k=1

(
n∑

i=1

ξikf(xi)j

)2

≤

√√√√ d∑
j=1

2∑
k=1

Es,ξ

(
n∑

i=1

ξikf(xi)j

)2

=

√√√√ d∑
j=1

2∑
k=1

Es

n∑
i=1

(f(xi)j)2

=

√√√√ 2∑
k=1

n∑
i=1

Es

d∑
j=1

(f(xi)j)2

=

√√√√ 2∑
k=1

n∑
i=1

Es∥f(xi)∥22

≤
√

2Cfn

17

Published as a conference paper at ICLR 2023

0 20 40 60 80 100
The number of updates (t)

−0.4

−0.2

0.0

0.2

γ̂
t

=
L̂
A s

(f
)
−
L̂
t s(
f

)

Figure 5: Plotting of the value of γ̂t = L̂A
s (f)− L̂t

s(f) as we update the weight Wt with the support set Ds.

Combining these, we have

Rn(Wt) ≤
Lℓ

√
4Cf∆t√
n

. (16)

Combining equation 14, equation 15, and equation 16 with union bounds, we have that for any δ > 0,
with probability at least 1− δ,

Lt
s(f) ≤ cLSimCLR(f)− ζ log(2)− γ̂t +∆t

√
16L2

ℓCf

|Ds| + 2Cℓ

√
ln(2/δ)

2|Ds| . (17)

where γ̂t = L̂A
s (f)− L̂t

s(f).

C.3 NUMERICAL EXPERIMENTS

This subsection aims to provide numerical evidence to support the assertion that the value of γ̂t =
L̂A
s (f)− L̂t

s(f) increases as we increase the value of t ∈ N0. Our experimental results, as illustrated
in Figure 5, demonstrate that this claim holds true, and that the value of γ̂t becomes positive and
remains steady after a few iterations (t = 10) of optimizing Wt on the support set Ds.

D CONNECTION TO META-LEARNING

Here we discuss the connection between our Set-SimCLR and meta-learning to clarify why our
method can be seen as a unsupervised meta-learning method as follows:

• First, we leverage data augmentation to construct pseudo-meta-tasks, where different
views of an image belong to the same pseudo-class, and meta-learn the set-encoder
of Set-SimCLR. The set encoder minimizes the distance between positive pairs of set
representations and repels negative pairs, where the set representation of the pseudo-class
is considered to be a class prototype. In other words, the set encoder enlarges inter-class
distance so that the set representation of each class eventually leads to a good initialization
of a linear classifier at meta-test time.

• There are a vast amount of existing meta-learning works proposing to meta-learn the
initialization of linear classifiers (Raghu et al., 2019) or amortized neural networks to predict
the weight of linear classifiers (Gordon et al., 2019; Iakovleva et al., 2020) by constructing
meta-tasks and simulating exact scenarios of meta-test. Similarly we construct the pseudo-
meta-tasks and learn the initialization of linear classifiers by simulating meta-test, thus the
set encoder of our Set-SimCLR is an indeed meta-learner.

• Moreover, Ni et al. (2022) have already highlighted the close relationship between metric-
based meta-learning (e.g., Prototypical Networks (Snell et al., 2017)) and contrastive self-
supervised learning (Chen et al., 2020a). They claim that we can consider contrastive self-
supervised learning as meta-learning since sampling a mini-batch corresponds to sampling
a meta-task and contrastive learning with a mini-batch is a B-way 1-shot classification
problem, where B is mini-batch size. Thus, our feature extractor f which learns through
instance and set-level contrastive learning is also a meta-learner.

18

Published as a conference paper at ICLR 2023

E META-SPLIT OF DATASETS

Table 2: The number of classes for meta-split of all datasets.

Dataset Meta Train Meta Valid Meta Test
Mini-ImageNet 64 16 20
Tiny-ImageNet 100 40 60

CIFAR100 50 20 30
Aircraft 50 20 30

Stanford Cars 98 39 59
CUB 100 40 60

In Table 2, we provide the number of classes for meta-split of all datasets we consider in this paper.
Note that we only use meta-test split of Tiny-ImageNet, CIFAR100, Aircraft, Stanford Cars and CUB
datasets for the evaluation in Section 4.2.

F DETAILS OF BASELINES

In this section, we detail the supervised meta-learning, unsupervised meta-learning and instance-level
self-supervised learning baselines. We first introduce two supervised meta-learning approaches which
we consider as “oracles” and four different unsupervised meta-learning baselines as follows;

1) MAML (oracle) (Finn et al., 2017): Model Agnostic Meta Learning where it learns the initializa-
tion of the parameters of the model such that few steps of gradient descent on a support set leads to
generalization on a query set. We compare against its performance reported in Hsu et al. (2019).

2) ProtoNets (oracle) (Snell et al., 2017): Euclidean distance-based meta-learning framework. It
learns a metric embedding space where we perform prediction by computing a distance between class
prototype and instances from query sets. We also compare against it using its performance reported
in Hsu et al. (2019).

3) CACTUs (Hsu et al., 2019): Clustering to Automatically Construct Tasks for Unsupervised
meta-learning. It automatically constructs tasks by clustering the unsupervised dataset in embedding
space learned by ACAI (Berthelot et al., 2019), BiGAN (Donahue et al., 2017), or DeepCluster (Caron
et al., 2018). Then it train either MAML or ProtoNets using the cluster indices as pseudo-labels.

4) UMTRA (Khodadadeh et al., 2019): Unsupervised Meta-learning with Tasks constructed by
Random sampling and Augmentation. For constructing a K-way 1-shot task, it randomly samples
K-way data points from unsupervised dataset and augments each data point. Then MAML is trained
on the constructed tasks.

5) LASIUM (Khodadadeh et al., 2021): It trains generative models on the given unlabeled data
and sample N different latent vector such that each pair-wise distance is greater than a predefined
threshold. Each latent vector is fed into the generative model and decoded to a training instance
belonging to distinct class. Then it adds some noise to each latent vector to generate S examples and
the generated ones are labeled with the class of the original latent vector. Finally, it trains MAML or
ProtoNets using the synthetic N -way S-shot task.

6) Meta-GMVAE (Lee et al., 2021): Meta-level Gaussian Mixture Variational AutoEncoder. It
learns a latent representation by matching set-level amortized variational posterior and task-specific
multi-modal prior optimized by EM algorithm.

We then present the four representative self-supervised baselines used in our experiments as follows:

1) SimCLR (Chen et al., 2020a;b): It is a constrative learning framework which learns by maximizing
agreement between differently augmented views of the same data example in the latent space.

2) MOCO (He et al., 2020; Chen et al., 2020c; 2021): It builds a dynamic feature dictionary using a
queue and momentum encoder and learns to minimize contrastive loss from the dictionary.

3) BYOL (Grill et al., 2020): From pair views of an image, it learns visual representation by
matching momentum encoder, which is exponentially moving average of the encoder.

19

Published as a conference paper at ICLR 2023

4) Barlow Twins (Zbontar et al., 2021): This method measure the cross-correlation matrix between
the feature representations of two different views and learns by making it close to identity matrix.

G MASKED AUTOENCODERS

Table 3: The hyperparameters of MAE, which produces the similar number of parameters as ResNet-
18 (i.e., VIT: 12, 782, 080 and ResNet-18: 11, 176, 512). The name of hyperparameter is based on
huggingface transformers library (Wolf et al., 2020).

Hyperparameters Value
hidden_size 512

num_hidden_layers 8
num_attention_heads 8

intermediate_size 512
hidden_act gelu (Hendrycks & Gimpel, 2016)

hidden_drop_prob 0.0
initializer_range 0.02
layer_norm_eps 10−12

is_encoder_decoder False
image_size 84
patch_size 6

num_channels 3
qkv_bias True

decoder_num_attention_heads 8
decoder_hidden_size 128

decoder_num_hidden_layers 3
decoder_intermediate_size 128

mask_ratio 0.75
norm_pix_loss True

Table 4: Results for 5-way S-shot classification on Mini-ImageNet. We report mean and standard
deviation of accuracy evaluated on 1000 episodes with 5 different runs, except for MAE. For MAE,
we report mean for accuracy for one run.

Method Base Encoder 1-shot 5-shot 20-shot 50-shot
SimCLR

ResNet-18

46.23 ±0.31 67.08 ±0.26 76.51 ±0.23 80.14 ±0.45

MOCO 43.96 ±0.35 62.64 ±0.14 72.21 ±0.35 78.02 ±0.20

BYOL 45.59 ±1.57 64.19 ±1.29 73.97 ±1.26 76.55 ±1.63

Barlow Twins 45.12 ±0.19 63.44 ±0.27 72.13 ±0.27 75.92 ±0.25

Set-SimCLR (ours) 53.54 ±0.66 69.79 ±0.28 78.53 ±0.26 82.10 ±0.47

MAE with lr = 0.002
VIT in Table 3

34.47 46.40 56.62 62.94
MAE with lr = 0.001 31.46 42.55 53.84 59.91
MAE with lr = 0.0005 32.38 45.83 58.61 65.65

MAE (He et al., 2022) is a recent self-supervised learning method based on masked auto-encoding
objective. We tried to use MAE as a baseline, and the experimental setups are as follows. It assumes
VIT (Dosovitskiy et al., 2021) as a base encoder, therefore, we use the hyperparameters in Table 3
which produce the similar amount of parameters as ResNet-18 (i.e., VIT: 12782080 and ResNet-
18: 11176512). We use huggingface transformers library (Wolf et al., 2020) for implementation.
Following the original implementation of MAE, we optimize MAE using AdamW (Loshchilov
& Hutter, 2019) with 0.05 for 400 epochs. The mini-batch size is set to 512. We search the
adequate learning rate in 0.002, 0.001, 0.0005 using meta-validation split. We use cosine learning
rate scheduler with 40 warm-up epochs. We use ResizedCrop, HorizontalFlip for augmentations.
In Table 4 shows the mean accuracy of ours, self-supervised learning baselines and MAE on the
Mini-ImageNet 5-way few-shot classification tasks. We found that MAE fails to achieve comparable
performance in our UML setting, therefore, we exclude it in our main text.

20

Published as a conference paper at ICLR 2023

H IMPLEMENTATION DETAILS OF SECTION 4.1

Table 5: The architecture of Conv5 used as a base encoder f for the experiments in Sec 4.1.

Output Size Layers
3× 84× 84 Input Image
64× 42× 42 Conv2d(3× 3, stride = 1, pad = 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride = 2)
64× 21× 21 Conv2d(3× 3, stride = 1, pad = 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride = 2)
64× 10× 10 Conv2d(3× 3, stride = 1, pad = 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride = 2)
64× 5× 5 Conv2d(3× 3, stride = 1, pad = 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride = 2)
64× 2× 2 Conv2d(3× 3, stride = 1, pad = 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride = 2)
256 Flatten

Table 6: The architecture of set encoder φ used for the experiments in Sec 4.1.

Output Size Layers
M × 256 M Input Features
M × 256 TransformerEncoder(dmodel = 256, dff = 256, num_heads = 4, ReLU)
1024 concat (mean(·); std(·); max(·); min(·))
256 Linear(1024, 256), ReLU
256 Linear(256, 256), ReLU
256 Linear(256, 256)

Table 7: The architecture of head g used for the experiments in Sec 4.1.

Output Size Layers
256 Input Feature
256 Linear(256, 256), BatchNorm1d, LeakyReLU
64 Linear(256, 64)

We provide pytorch-like architecture implementations of base encoder f , set encoder φ and head g in
Table 5, 6 and 7, respectively. We follow SimCLR (Chen et al., 2020a;b) for random augmentation,
which is detailed in Appendix J. We apply the composed augmentations to 64 mini-batch images eight
times (i.e., M = 64, V = 8), resulting in 4 elements in each set. We optimize the base encoder, set
encoder and head network for 400 epochs using Adam optimizer (Kingma & Ba, 2015) with default
settings (i.e., β1 = 0.9 and β2 = 0.999). We use constant learning rate of 0.001. For downstream
tasks, we use scikit-learn (Pedregosa et al., 2011) package with default settings to optimize a linear
classifier.

I IMPLEMENTATION DETAILS OF SECTION 4.2

Table 8: The architecture of set encoder φ used for the experiments in Sec 4.2.

Output Size Layers
M × 512 M Input Features
M × 512 TransformerEncoder(dmodel = 512, dff = 512, num_heads = 4, ReLU)
2048 concat (mean(·); std(·); max(·); min(·))
512 Linear(2048, 512), ReLU
512 Linear(512, 512), ReLU
512 Linear(512, 512)

For the base encoder f , we use ResNet-18 architecture. Please see the original paper (He et al., 2016)
for implementation details. We provide pytorch-like architecture implementations of set encoder φ
and head g in Table 8 and 9, respectively. For a fair comparison, we use the same architecture of head
network g in Table 9, for all self-supervised learning methods except for MOCO. MOCO does not use
the head as firstly proposed in the original paper. We use the same random augmentations described

21

Published as a conference paper at ICLR 2023

Table 9: The architecture of head g used for the experiments in Sec 4.2.

Output Size Layers
512 Input Feature
512 Linear(512, 512), BatchNorm1d, LeakyReLU
128 Linear(512, 128)

Table 10: The selected learning rate of each method.

Method Learning Rate
SimCLR 0.001
MOCO 0.001
BYOL 0.0005

Barlow Twins 0.001
Set-SimCLR (ours) 0.0005

in Appendix J. For our method Set-SimCLR, we apply the augmentations 8 times to the mini-batch
of 64 images (i.e., M = 64, V = 8), resulting in 4 elements in each set, while performing the same
augmentation twice on the mini-batch of 256 images (i.e., M = 256, V = 2) for the other baselines.
For all the methods, we optimize the models for 400 epochs using Adam optimizer (Kingma & Ba,
2015) with default settings (i.e., β1 = 0.9 and β2 = 0.999). We do not use learning rate scheduling
which is not effective for any methods in our experiments. We search for an adequate learning rate in
0.001, 0.0005, 0.0001 for baselines and ours using a meta-validation split. We provide the selected
learning rate of each method in Table 10. We use scikit-learn (Pedregosa et al., 2011) package with
default settings to optimize classifiers for downstream tasks.

J RANDOM AUGMENTATION

Table 11: The application probability and hyperparameters of each augmentation.

Augmentation Probability Hyperparameters
ResizedCrop 1.0 size = (84, 84), scale = (0.08, 1.0), ratio = (0.75, 1.3...)

HorizontalFlip 0.5 N/A
ColorJitter 0.8 brightness = 0.8, contrast = 0.8, saturation = 0.8, hue = 0.2
GrayScale 0.2 N/A

GaussianBlur 0.5 kernel_size = (85, 85), σ ∼ U(0.1, 2.0)

For random augmentation, we compose ResizedCrop, HorizontalFlip, ColorJitter,
GrayScale and GaussianBlur. The application probability and hyperparameters of each aug-
mentation is shown in Table 11. Note that we perform ResizedCrop on a larger resolution of
224×224 images than the resolution of 84×84 images we target, which is found to be more effective.
We implement the augmentation using Kornia framework (Riba et al., 2020), which allows a faster
augmentations on GPU.

K WALL-CLOCK TIME FOR SSL METHODS

Table 12: We report the average wall-clock time to train SSL methods for 400 training epochs.

Method Wall-Clock Time for 400 epochs
SimCLR 9h 38m 54s
MOCO 10h 36m 36s
BYOL 10h 40m 34s

Barlow Twins 10h 28m 8s
SetSimCLR 22h 45m 3s

22

Published as a conference paper at ICLR 2023

L FULL TABLES FOR FIGURE 2

Table 13: 5-way 5-shot classification results on Aircraft, Stanford Cars, CIFAR100, CUB, Mini-
ImageNet and Tiny-ImageNet datasets. The base encoder is ResNet-18. We report the mean and
standard deviation of 5 runs with different random seeds.

Method Mini Tiny CIFAR100 Aircraft Cars CUB
Training from Scratch 34.22 ±0.45 34.11 ±0.44 42.36 ±0.56 36.82 ±0.49 29.29 ±0.39 33.34 ±0.42

SimCLR 67.08 ±0.26 66.06 ±0.34 64.27 ±1.35 46.36 ±0.11 37.05 ±0.12 47.30 ±0.30

MOCO 62.64 ±0.14 60.67 ±0.41 60.75 ±0.83 46.81 ±0.54 38.33 ±0.57 47.02 ±0.13

BYOL 64.19 ±1.52 63.83 ±1.31 65.95 ±1.73 44.29 ±0.49 35.90 ±0.92 45.95 ±1.03

Barlow Twins 63.44 ±0.27 62.20 ±0.26 63.25 ±0.52 46.05 ±0.45 34.70 ±0.23 44.73 ±0.25

Set-SimCLR (ours) 69.79 ±0.28 67.27 ±0.18 66.85 ±1.76 47.49 ±0.39 38.50 ±0.37 49.00 ±0.31

Table 14: 5-way 1, 5, 20, 50-shot classification results on Mini-ImageNet dataset. The base encoder
is ResNet-18. We report the mean and standard deviation of 5 runs with different random seeds.

Method 1-shot 5-shot 20-shot 50-shot
Training from Scratch 24.86 ±0.36 34.22 ±0.45 45.60 ±0.48 53.01 ±0.49

SimCLR 46.23 ±0.31 67.08 ±0.26 76.51 ±0.23 80.14 ±0.45

MOCO 43.63 ±0.35 62.64 ±0.14 72.21 ±0.35 78.02 ±0.20

BYOL 45.59 ±1.57 64.19 ±1.29 73.97 ±1.26 76.55 ±1.63

Barlow Twins 45.12 ±0.19 63.44 ±0.27 72.13 ±0.27 75.92 ±0.25

Set-SimCLR (ours) 53.54 ±0.66 69.79 ±0.28 78.53 ±0.26 82.10 ±0.47

M MORE ABLATION STUDIES

Table 15: 5-way N -shot classification results of SimCLR, Set-SimCLR without set representation at
meta test, and original Set-SimCLR on Mini-ImageNet. The base encoder is ResNet-18. We report
the mean and standard deviation of 5 runs with different random seeds.

Method Set 1-shot 2-shot 5-shot 20-shot 50-shot
SimCLR ✗ 46.23 ±0.31 55.58 ±0.39 67.08 ±0.26 76.51 ±0.23 80.14 ±0.45

Set-SimCLR ✗ 49.34 ±0.57 59.10 ±0.28 69.03 ±0.54 77.95 ±0.20 81.68 ±0.34

Set-SimCLR ✓ 53.54 ±0.66 60.87 ±0.24 69.79 ±0.28 78.53 ±0.26 82.10 ±0.47

To understand the performance gain of Set-SimCLR step-by-step, we conduct an additional ablation
study by comparing the full model Set-SimCLR against SimCLR, and Set-SimCLR without the
initialization of classifier weight using set representations. Table 15 shows that Set-SimCLR without
set initialization, improves the generalization performance of the model trained with only SimCLR
loss by 1.44% ∼ 3.54%. Thus, the performance gain is a consequence of introducing set-level loss.
If we leverage learned set representation to initialize the weight W (Set-SimCLR with set), we can
further boost the performance of the model Set-SimCLR without set by 0.42% ∼ 4.2%. We further
observe the performance gain becomes larger for fewer shots. Therefore, learning a set representation
with our proposed set-level loss is crucial for better generalization performance.

Table 16: 5-way N -shot Mini-ImageNet classification results Set-SimCLR with the parameters Wt at
different optimization steps (t = 0, 20, 100). The base encoder is ResNet-18. We report the mean
and standard deviation of 5 runs with different random seeds.

Method t 1-shot 5-shot 20-shot 50-shot
SimCLR 0 47.91 ±1.53 57.34 ±1.24 59.78 ±1.63 60.17 ±1.51

Set-SimCLR 20 52.94 ±0.42 69.22 ±0.24 78.27 ±0.24 81.90 ±0.22

Set-SimCLR 100 53.54 ±0.66 69.79 ±0.28 78.53 ±0.26 82.10 ±0.47

23

Published as a conference paper at ICLR 2023

In Table 16, we provide the performance on 5-way N-shot Mini-ImageNet with the parameters Wt at
different optimization steps (t = 0, 20, 100) for fine-tuning. Though Set-SimCLR performs not that
good at t = 0, it rapidly adapts to support sets to reach near the best accuracy at t = 20.

24

	Introduction
	Related Work
	Method
	Problem Statement
	Self-Supervised Contrastive Learning
	Self-Supervised Set Representation Learning with SimCLR
	Theoretical Motivation

	Experiment
	Comparison to Unsupervised Meta-Learning
	Comparison to Self-Supervised Learning (SSL)
	Ablation Study and Analysis

	Conclusion
	Transformer Encoder
	Algorithm
	On Theoretical Motivation
	On the relationship with metric-based inference
	Proof of Theorem 1
	Numerical Experiments

	Connection to Meta-Learning
	Meta-split of Datasets
	Details of Baselines
	Masked Autoencoders
	Implementation Details of Section 4.1
	Implementation Details of Section 4.2
	Random Augmentation
	Wall-clock Time for SSL methods
	Full Tables for Figure 2
	More Ablation Studies

