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ABSTRACT

Typical continual learning setup assumes that the dataset is split into multiple dis-
crete tasks. We argue that it is less realistic as the streamed data would have no
notion of task boundary in real-world data. Here, we take a step forward to in-
vestigate more realistic online continual learning – learning continuously chang-
ing data distribution without explicit task boundary, which we call boundary-free
setup. Due to the lack of boundary, it is not obvious when and what information
in the past to be preserved for a better remedy for the stability-plasticity dilemma.
To this end, we propose a scheduled transfer of previously learned knowledge. In
addition, we further propose a data-driven balancing between the knowledge in
the past and the present in learning objective. Moreover, since it is not straightfor-
ward to use the previously proposed forgetting measure without task boundaries,
we further propose a novel forgetting and knowledge gain measure based on in-
formation theory. We empirically evaluate our method on a Gaussian data stream
and its periodic extension, which is frequently observed in real-life data, as well
as the conventional disjoint task-split. Our method outperforms prior arts by large
margins in various setups, using four benchmark datasets in continual learning lit-
erature – CIFAR-10, CIFAR-100, TinyImageNet and ImageNet. Code is available
at https://github.com/yonseivnl/sdp.

1 INTRODUCTION

In real-world continual learning (CL) scenarios (He et al., 2020), data arrive in a streamed man-
ner (Aljundi et al., 2019a; Cai et al., 2021) whereas typical continual learning setups split the data
into multiple discrete tasks whose data distributions differ from each other. Moreover, most CL al-
gorithms are studied in an offline CL setup (Kirkpatrick et al., 2017; Rebuffi et al., 2017; Saha et al.,
2021), where the model can access data multiple times. While being prevalent in the literature, this
setup has a number of issues far from the realistic scenario. Although the task setup have been partly
addressed by (Prabhu et al., 2020; Koh et al., 2021; Kim et al., 2021b; Bang et al., 2022), the re-
vised setups still have the notion of task boundary whereas real-world data may not have the explicit
task boundaries as the data distribution changes continuously. Despite that many methods update
the model in a boundary-agnostic manner, called task-free CL (Aljundi et al., 2019b; Koh et al.,
2021), they still leverage the notion of task boundary for knowledge transfer and evaluation, e.g.,
leveraging the fact that distribution shift in data stream occurs only at task boundaries. In addition,
the definition of forgetting depends on the notion of ‘old’ and ‘new’ tasks, which are defined by the
task boundary.

We argue to address an online CL setup where data are learned online (allowing only a single access
to data) with continuous distribution shift without explicit task boundaries. We refer to the setup as
online boundary-free continual learning. In this setup, a small set of data is streamed to the model
one by one, and the model only has access to the current data batch only (Aljundi et al., 2019c;a)
without the notion of task boundary.

For the distribution of a continuous data stream, following (Shanahan et al., 2021; Wang et al.,
2022), we consider Gaussian distribution as an instance of data streaming distributions.The Gaussian

† indicates the corresponding author.
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online data stream models the frequency of each class as Gaussian distribution over time. Note that
classes do not recur after their initial Gaussian mode in this setup. However, in real-world data, the
frequency of a class may have multiple recurring modalities over time, rather than a single mode,
as depicted in Fig. 1. To further address such a scenario, we investigate a periodic-Gaussian online
stream, where each class would recur and the recurrence is periodic. To the best of our knowledge,
this is the first work to study CL in continuous data distributions either in periods or not.

The boundary-free setup poses several challenges as follows. In the CL setup with explicit
task boundary definition, methods using both episodic memory and distillation (i.e., using data
prior (Buzzega et al., 2020; Wu et al., 2019; Hou et al., 2019)) show compelling perfor-
mance (Masana et al., 2020). They store the model weights at each task boundary and use the stored
model as a distillation teacher for mitigating catastrophic forgetting. However, in the continuous
data stream, it is challenging to determine which past models should be stored to be used as a data
prior. To determine which data prior to transfer the knowledge from, we propose to combine dif-
ferent exponential moving average (EMA) distributions to have a particular schedule of transferring
past knowledge.

In addition, as the past knowledge is now from diverse contexts, it is not trivial to balance the
supervisory signal from the past and the present. Instead of using a fixed balancing hyperparameter,
we propose to learn to balance them for better generalization in multiple scenarios, i.e., datasets. In
our empirical studies, we observe that our method outperforms comparable prior arts in Gaussian,
periodic-Gaussian, and disjoint task-split data stream on 4 popular benchmarks in CL literature.

Moreover, conventional performance metrics for CL methods including forgetting is not trivially
applicable to our setup as they are defined on the task boundary. Here, we propose a new metric for
measuring forgetting using information theory. In contrast to the conventional forgetting metric, it
captures loss and gain of intra-class knowledge, appropriate for periodic data distribution where the
model has to accumulate different knowledge about the same class over multiple periods.

We summarize our contributions as follows:

• Extensively studying online CL with continuous data stream setup without explicit task bound-
ary, including newly proposed periodic CL setup.

• Proposing an online boundary-free CL method that uses scheduled transfer of past knowledge.
• Proposing to learn to balance amount of using past and present knowledge.
• Proposing new metrics that can measure loss of past knowledge (i.e., forgetting) and gain of

new knowledge (i.e., the opposite of intransigience) based on information theory.

2 RELATED WORK

Setups for Continual Learning. With the increasing popularity of CL, there have been several
proposals on learning configurations to be realistic. As the first task setup to mimic a real-world
data stream that continuously changes over time, prior arts have employed the notion of task-split,
where the entire data is split into multiple subsets for different continuous tasks (Rebuffi et al., 2017;
Castro et al., 2018; Wu et al., 2019). When each subset arrives, it is stored and provided as a set
of examples to learn a model. They use multiple epochs to learn a model (Kirkpatrick et al., 2017;
Rebuffi et al., 2017; Saha et al., 2021), which is referred as offline setup, while a small batch sample
of the subset is streamed and used only once in online setup (Rolnick et al., 2019; Chaudhry et al.,
2019; Aljundi et al., 2019a). In the task-split setup, task boundaries are available and well exploited
in various offline/online CL methods (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017).

In recent literature, however, there has been efforts to question whether the task-split setup is realis-
tic. To enforce the class distribution of each split differently, disjoint task-split confines each class to
be assigned to only a single task (Castro et al., 2018). As the disjoint setup is rather artificial as the
data stream arrives in class agnostic manner. Blurry task-split allows every task shares all classes but
with different dominance (Aljundi et al., 2019c; Bang et al., 2021). The i-Blurry task-split further
guarantee some classes to be added incremental to the blurry task-split (Koh et al., 2021). However,
these task configurations have explicit task boundary, which is still artificial. For a more realistic
scenario, task-free CL (Aljundi et al., 2019b) has been studied, where models are not allowed to use
task boundary information during training. However, they still train and evaluate methods on task-
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Figure 1: Search interest trends of three items (i.e., swimsuit, coat, Christmas gift) from 2009 to the
present in Google Trends. Each item follows a periodic distribution with its own mode and duration.

split setup such as disjoint, blurry, and i-blurry. Thus, task-free is more of a restriction on methods
rather than a setup.

In contrast to the prior work, we propose a boundary-free setup. It removes the notion of artificial
task boundary, rather, the data arrival follows a certain continuous distribution over time. (Shanahan
et al., 2021; Wang et al., 2022) investigate data stream following Gaussian distribution, they still
split the data into micro-tasks and neglect a periodic property of real-world data, which we study
further here.

Online Continual Learning Methods. One of the goals of successful CL learners is not to forget
knowledge obtained from the preceding tasks; here, catastrophic forgetting has become the main
challenge with deep neural networks for CL (French, 1999). To mitigate the issue, there are four
main directions in the recent literature, namely distillation, memory replay, parameter isolation, and
regularization. For a more comprehensive review, we refer the reader to surveys (De Lange et al.,
2021; Mai et al., 2022).

The key difference between online and offline CL is the accessibility of streaming inputs; the model
can only see the entire stream once except for the samples in the episodic memory. To tackle this
online constraint, several methods have been developed based on the similar ways in offline CL.
GEM (Lopez-Paz & Ranzato, 2017) leverages the gradient of samples in the available memory so
that they alleviate forgetting the knowledge of the previous tasks. A-GEM (Chaudhry et al., 2018b)
proposes to utilize the average of gradients for each task instead of using the projection of all the
gradients. It further saves memory usage and reduces the computational cost. GDumb (Prabhu
et al., 2020) proposes greedy balance selection which randomly selects the samples while balancing
the number of selected samples per class. GSS (Aljundi et al., 2019c) and RM (Bang et al., 2021)
utilize the gradient and uncertainty of each sample, respectively, to increase diversity of selected
samples. CLIB (Koh et al., 2021) makes up informative samples in the memory by discarding the
least informative samples in the memory for further training.

Unlike offline CL, however, online CL understudied the methods which utilize knowledge distilla-
tion. DER (Buzzega et al., 2020) utilized the knowledge distillation between logits of an original
image and augmented image from origin, which is well-known and widely used. In our proposed
setup, which is boundary-free, it is not trivial to determine when and what knowledge should be
transferred to mitigate the forgetting. Here, we propose a new knowledge distillation method which
is suitable for online boundary-free CL by using scheduled data prior.

3 ONLINE TASK BOUNDARY-FREE CONTINUAL LEARNING SETUP

Motivated by a real data stream that changes continuously (e.g., Google search trend of ‘swimsuit’,
‘coat’, and ‘Christmas gift’ during 13 years, depicted in Fig. 11), we propose a new CL setup called
online boundary-free. We argue that our setup is more realistic than the task-split setup for the
following considerations: (1) an ever-changing distribution with (periodic) Gaussian online stream,
(2) no notion of explicit task boundaries, and (3) any-time inference for online continual learning.

1
https://trends.google.com/trends/explore?date=all&geo=US&q=christmas%20gift,coat,swimsuit
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3.1 GAUSSIAN ONLINE STREAM

For easeness of modeling, here we assume that a real data stream for each class follows Gaussian
distribution. First, we consider a single mode stream, then extend it to a multi-modal periodic
stream. Gaussian-distributed task modeling has been addressed by Shanahan et al. (2021); Wang
et al. (2022). However, they differ from ours since their distribution change is not fully continuous
as they still split data into multiple micro-tasks and overlook the periodicity of the online stream.

Specifically, we consider the ‘arrival time’ of samples to be modeled by the Gaussian distribution. In
order to create an online stream without task boundary; samples are streamed in an increasing order
of their arrival time. Formally, let us assume that the distribution of arrival time for a class i follows
the Gaussian distribution N (µi, σ

2). For each class i, the mean µi (=mode) of the distribution is
exclusively chosen from

{
0, 1

N , . . . , N−1
N

}
where N is the number of classes, and the standard

deviation σ is the same for all classes for simplicity (we use σ = 0.1 for our empirical validations
and provide analysis on different values in the appendix).

Periodic Gaussian Online Stream. By a simple modification, we can extend the Gaussian stream
to a periodic one. Now, the distribution of arrival time of a class i not only follows the Gaussian
distribution but also is repeated multiple times:

1

R

R−1∑
r=0

N (µi + r, σ2), (1)

where R is the number of repetition (i.e., periods, we use R = 5 in our experiments). The mean µi

and standard deviation σ are the same as the ones in the non-periodic Gaussian online stream.

4 EVALUATION METRICS FOR CONTINUAL LEARNERS IN THE
BOUNDARY-FREE DATA STREAM

For evaluating the overall performance in a boundary-free CL, we use the area under the curve of
accuracy (AAUC) proposed in (Koh et al., 2021) for measuring area under the curve of accuracy-
to-(# samples) curve, and last accuracy (Alast) that measures the final accuracy after learning all
samples. We cannot measure Aavg metric since there is no task boundary.

Previous CL research use Forgetting and Intransigence metric (Chaudhry et al., 2018a) to investigate
stability and plasticity of CL algorithms. However, these metrics require to measure the accuracy of
the previous task, so they are not readily measurable in the boundary-free setup due to lack of task
boundary. Here, we propose new metrics of measuring forgetting and ability to learn new knowledge
by computing loss and gain of knowledge based on information theory.

Knowledge Loss Ratio. Specifically, we want to measure loss and gain of knowledge between
arbitrary two points in the training, t1 and t2. Let YGT be ground truth label for a randomly selected
sample from a data distribution and Yt be the model’s prediction for that sample at time t. We define
the Total Knowledge (TK(t)) at time t as:

TK(t) := I(Yt;YGT), (2)

where I(X;Y ) =
∑
y∈Y

∑
x∈X

P (x, y) log

(
P (x, y)

P (x)P (y)

)
is a mutual information that measures the

quantity of information one variable has about the other. In other words, it measures how much
information about ground truth we can obtain by observing the model’s prediction at time t.

To measure the loss of knowledge between t1 and t2, we quantify the knowledge in Yt1 but not in
Yt2 . The knowledge loss can be measured by the knowledge difference between having both output
(Yt1 , Yt2) and having only Yt2 . Thus, we define Knowledge Loss (KL(t1, t2)) between t1 and t2 as:

KL(t1, t2) := I(Yt1 , Yt2 ;YGT)− I(Yt2 ;YGT) = I(Yt1 ;YGT|Yt2), (3)
where I(X;Y |Z) = I(X,Z;Y )− I(Z;Y ) is the conditional mutual information. By dividing the
knowledge loss by the total knowledge at t1, we obtain Knowledge Loss Ratio (KLR(t1, t2)) as:

KLR(t1, t2) :=
KL(t1, t2)

TK(t1)
=

I(Yt1 ;YGT|Yt2)

I(Yt1 ;YGT)
. (4)
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KLR measures the ratio of the past knowledge that was lost between t1 and t2, which we will use
an equivalent measure for forgetting in continuous data stream.

Knowledge Gain Ratio. Similarly, we can define the Knowledge Gain (KG) between t1 and t2
as:

KG(t1, t2) = I(Yt1 , Yt2 ;YGT)− I(Yt1 ;YGT) = I(Yt2 ;YGT|Yt1). (5)
Similar to KLR, we define Knowledge Gain Ratio (KGR) to measure the ratio of the potentially
obtainable knowledge obtained between t1 and t2. The amount of information in GT label is H(YGT)
where H(Y ) = −

∑
y∈Y P (y) logP (y) is the entropy, so the potentially obtainable knowledge at

time t1 is H(YGT)− TK(t1). Thus, KGR(t1, t2) is defined as:

KGR(t1, t2) :=
KG(t1, t2)

H(YGT)− TK(t1)
=

I(Yt2 ;YGT|Yt1)

H(YGT)− I(Yt1 ;YGT)
. (6)

GT Label

Model Output at       Model Output at 

(KL) (KG)

Figure 2: Relation of knowledge
learned by model to the Knowledge
Loss (KL) and Knowledge Gain (KG).

Implications. We illustrate the implication of the de-
fined KL and KG in a Venn-Diagram of Fig. 2. Upper
circle, lower left circle, lower right circle represent YGT,
Yt1 , and Yt2 , respectively. KL is knowledge about GT
that is in model at t1 but not in t2. KG is the knowledge
about GT that is in model at t2 but not in t1. The triple in-
tersection I(Yt1 ;Yt2 ;YGT) represents retained knowledge
about GT that is in model at both t1 and t2. Finally, the
lower intersection, I(Yt1 ;Yt2 |YGT), represents useless in-
formation shared in both models that are not relevant to
GT labels, such as bias in the model.

One advantage of KL is that it can be interpreted as intra-
class forgetting. Since conventional ‘forgetting’ is mea-
sured using task-wise or class-wise accuracy, if forgetting
and knowledge gain simultaneously happens within a task
or a class, its net effect is zero, thus its effect will not be
measured. For example, if we assume there is class A
with features a and b and the model forgot about feature a and learned about feature b so that over-
all accuracy for class A is the same, it counts as zero forgetting in the conventional measure. In
contrast, when using the proposed Knowledge Loss (KL), the current model only has information
about feature b, but past and current models combined have information about both a and b, so it
captures loss of information about feature a.

5 APPROACH

The existing task-split setup partitions the data stream into multiple discrete tasks. Prior arts in CL
literature that have been developed in this setup focus on extracting information from prior models
learned in the previous tasks. However, in the online boundary-free setup whose data stream is not
partitioned into explicit tasks, it is necessary to consider information at which previous moment we
have to transfer to the current time step for better stability and plasiticity trade-off. Although there is
no task boundary, a model learned in the past can be stored when each sample arrives and used as a
data prior, i.e., a teacher in distillation framework. However, it is not clear which previous models to
be used to transfer knowledge to the current time step. We consider various weighting functions to
transfer information from the previous data stream in online and continuous fashion, and summarize
the empirical results in Table 1.

5.1 SCHEDULED DATA PRIOR

To determine the amount of past knowledge to be transferred in a continuous fashion, we consider
a schedule of transfer of past knowledge by a composite function of exponential moving average
(EMA). EMA calculates a weighted average in an online manner with exponentially decaying weight
to place a higher weight on recent datapoints. EMA model θα(t) with EMA ratio α at timestep t is
defined recursively as

θα(t) = (1− α) ∗ θα(t− 1) + α ∗ θ(t) (7)

5



Published as a conference paper at ICLR 2023

0 5k 10k 15k 20k 25k 30k
Present              timesteps              Past

0
2e-5
4e-5
6e-5
8e-5

10e-5
12e-5
14e-5

we
ig

ht

EMA

(a) EMA weights with α = 0.0001
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(b) SDP weights with µ = 10, 000 and c2 = 0.75

Figure 3: Comparison between weight distribution of EMA and SDP.

where θ(t) is the online model’s parameter at time t. In particular, the EMA update emphasizes the
recent knowledge more than the past knowledge by a exponentially decreasing weight distribution,
as shown in Fig. 3-(a). However, we argue that recently learned information is well maintained in
the model being currently trained (i.e., not yet forgotten) and need to shift the focus to a slightly
farther past (as depicted in Fig. 3-(b)).

To implement a such weighting scheme, we propose a hypo-exponential distribution, which has a
skewed-bell curve shape to transfer the knowledge from the past. We configure the hypo-exponential
distribution by weighted average of two EMA curves with different hyperparameters. The resulting
distribution has a mode in the distant past while the vanilla EMA has the mode at the nearest past
then the weight monotonically decreases.

Specifically, to construct the scheduled data prior (SDP), we take a weighted sum of two EMA
models θα(t) and θβ(t) with EMA ratios of α and β where α > β. Using the coefficient for the
hypo-exponential distribution, the proposed SDP model θSDP(α,β)(t) is defined as:

θSDP(α,β)(t) =
α

α− β
θβ(t)−

β

α− β
θα(t). (8)

Its weight are non-negative and summed up to 1, and form a skewed-bell curve as depicted in Fig. 3-
(b). Instead of using α and β, we define SDP with mean µ and coefficient of variation c2 = σ2

µ2

of weight distributions, where σ2 is the variance of the distribution, so that hyperparameters are
interpretable. The values of α and β can be calculated from µ and σ as:

α =
1 +

√
2c2 + 2

µ − 1

µ(1− c2)− 1
, β =

1−
√
2c2 + 2

µ − 1

µ(1− c2)− 1
, (9)

where α and β are positive real values when 1
2 −

1
µ < c2 < 1− 1

µ . The derivation for these can be
found in appendix.

Teacher Model AAUC ↑ Alast ↑
None (Baseline) 62.37±0.52 64.22±0.97
Periodically Saving Model (Offline) 63.44±0.10 65.67±1.38
Saved Logits (DER) 59.82±0.30 58.92±2.36
Saved Features (DER) 61.55±0.22 58.78±2.38
EMA Model 63.75±0.22 66.55±3.32

SDP Model (Ours) 64.04±0.25 69.47±1.79

Table 1: Comparison of past knowledge transfer functions for con-
tinual learners on a Non-Periodic Gaussian data stream in CIFAR-
10. The proposed method outperforms other functions including
EMA Model.

We empirically validate our
hypothesis by a compara-
tive study of using differ-
ent scheduling distribution of
past knowledge transfer in
Tab. 1. As shown in the table,
the proposed weight distribu-
tion (SDP) outperform other
scheduling functions by a no-
ticeable margin.

5.2 LEARNING TO
BALANCE PAST AND PRESENT KNOWLEDGE IN LEARNING

While we transfer the knowledge from the past experience by the SDP distribution, balancing the
amount of information from the past and the current time step is a remaining challenge for continual
learners (Mai et al., 2022). The balancing hyperparameter is usually tuned by a hand-crafted manner
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and is dataset specific. Moreover, fixed parameter is not always optimal, as importance of classifica-
tion and distillation may vary over the course of training. Thus, we propose to learn to balance them
for better generalization to different data context and adapting in different phases of training.

With the learnable balancing parameter λt, we can write the final objective as:

L(x, y) = λt · LCE(x, y) + (1− λt) · ηk · LKD(x), (10)

where LCE(x, y) is the cross-entropy loss for current time step’s knowledge and LKD(x) = ∥f(x)−
fθSDP(x)∥22 is the L2 distillation loss for the past knowledge transfer and fθSDP is the neural network
with parameters θSDP obtained by equation 5. Before balancing the two terms for each task, since
model parameter update is proportional to gradient, we normalize the scale of the two terms by ηk:

ηk =
|∇fLCE|
|∇fLKD|

, (11)

where f is the feature layer of the model and k is a batch index. Note that we use the gradient norm
at the feature layer since that of the earlier layers will be proportional to it thanks to the chain rule.

λt is typically defined as |Cnew|
|Cnew|+|Cold| (Wu et al., 2019), where Cnew is the new classes, i.e., classes in

the current task and Cold is old classes, i.e., classes from the previous tasks. In the online boundary-
free setup, unfortunately, as task is not defined, the notion of new or old is not available for each
class. Instead of hard assignment of new and old classes, we measure 0 ≤ γi ≤ 1 that represents how
new class i is. The γi is measured by the inverse of past model’s average confidence over samples
in class i, since the model will have low confidence for new classes. If a past model predicts class i
with p(i) = 1, we consider that the model has completely learned class i, so γi = 0. If it predicts
class i with p(i) ≤ 1

N where N is the total number of classes, i.e., no better than a random model,
we consider that the model has learned nothing about class c, so γi = 1. To compute γi, we use
the samples’ confidence on currently learned model at the current time step before using them for
training, as a proxy of validation accuracy.

Finally, we define the online balancing parameter λt by averaging confidence for all the samples for
each class in the current time step as:

λt =

∑N−1
i=0 γi
N

, where γi =

{
1, if p(i) < 1/N,
N

N−1 (1− p(i)) , otherwise.
(12)

6 EXPERIMENTS

Experimental Setup. For empirical validations, following (Koh et al., 2021; Guo et al., 2022), we
use four benchmark datasets; CIFAR-10, CIFAR-100, TinyImageNet, and ImageNet. Most of our
experiments are on Gaussian and Periodic-Gaussian online stream defined in Sec. 3.1 for boundary-
free setup except in Sec. 6.3 where we evaluate methods on disjoint stream using 5-split-CIFAR. We
use σ = 0.1 for Gaussian setup, and σ = 0.1, R = 5 for Periodic-Gaussian setup.

For evaluation metrics, we use the area under the curve of accuracy (AAUC) and last accuracy (Alast)
for overall performance, and knowledge loss ratio (KLR) and knowledge gain ratio (KGR) for sta-
bility and plasticity, as defined in section 4. KLR and KGR are measured every 10, 000 samples for
CIFAR-10 and CIFAR-100, every 20, 000 samples for TinyImageNet, every 100, 000 samples for
ImageNet. All results are averaged over 3 different random seeds, except ImageNet (Bang et al.,
2021; Koh et al., 2021) for computational cost. We will publicly release the implementation of our
method and the continually learned models.

Method Detail. SDP uses an episodic memory, updated by the Greedy Balancing Sampler (Prabhu
et al., 2020). For training, we use only the samples randomly selected from the memory, following
(Koh et al., 2021). We provide a pseudocode of SDP in Appendix Sec. A.4. For the hyperparameters,
we use µ = 10, 000 and c2 = 0.75 found by hyperparameter search on CIFAR-10 non-periodic
Gaussian setup, for all experiments. Details can be found in Appendix Sec. A.9

Baselines. We compare our method with other baselines that can be used in task-free setup:
ER (Rolnick et al., 2019), DER++ (Buzzega et al., 2020), ER-MIR (Aljundi et al., 2019a),
Gdumb (Prabhu et al., 2020), and CLIB (Koh et al., 2021). Note that since our setup is boundary-
free, only the task-free methods can be applied.

7
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Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 55.97±0.85 58.59±2.56 23.36±1.39 21.52±0.92 36.93±0.77 40.93±0.35 51.77±0.87 17.42±0.50
DER++ 56.12±0.14 60.54±2.37 23.60±2.12 22.57±0.98 28.77±0.67 34.48±0.62 48.83±1.49 17.35±0.16
ER-MIR 56.48±0.18 59.38±2.83 25.04±1.67 21.72±0.16 34.76±1.20 37.20±2.06 57.23±1.14 16.46±0.68
GDumb 46.45±0.68 42.62±0.64 35.47±0.51 11.69±0.32 28.81±0.74 25.38±0.26 86.75±2.07 8.54±0.34
CLIB 63.01±0.31 65.24±2.10 20.79±1.64 22.52±1.92 42.79±0.65 43.81±0.58 48.59±1.78 15.96±0.26

SDP (Ours) 66.51±0.42 76.29±0.50 10.75±1.48 23.19±1.16 46.34±0.64 54.93±0.56 36.56±0.92 18.77±0.27

Methods TinyImageNet ImageNet

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 21.78±0.76 22.64±0.44 66.39±1.36 9.04±0.88 24.16 26.64 39.43 6.19
DER++ 17.13±0.88 16.85±0.63 69.65±4.21 7.51±0.64 19.34 21.17 40.64 5.71
ER-MIR 21.64±0.77 22.55±0.66 66.51±1.18 9.43±0.46 12.86 24.70 54.53 8.23
GDumb 18.81±0.64 15.08±0.25 91.58±2.15 3.60±0.10 13.74 10.24 64.23 2.95
CLIB 27.53±0.94 26.10±0.93 63.97±2.18 6.16±0.39 34.11 31.60 36.45 6.20

SDP (Ours) 30.49±0.69 32.59±0.20 54.85±0.30 8.30±0.10 35.52 33.94 39.37 8.25

Table 2: Accuracy of continually learned model in Non-Periodic Gaussian data stream in CIFAR-
10, CIFAR-100, TinyImageNet and ImageNet. The results except ImageNet are the average values
of the three random seeds.

Implementation Detail. We use ResNet-18 (He et al., 2016) as the network architecture for all
experiments. We set training hyperparameters following (Koh et al., 2021; Bang et al., 2021; Prabhu
et al., 2020). For CIFAR-10, CIFAR-100, TinyImageNet and ImageNet, we use batch size of 16,
16, 32, 256, number of updates per sample of 1, 3, 3, 0.25, memory size of 500, 2000, 4000, 20000,
respectively. We use Adam optimizer with LR of 0.0003 for all datasets and setup. Constant LR
schedule is applied unless the method specifies the LR schedule (Koh et al., 2021; Prabhu et al.,
2020). For data augmentation, some prior works (Koh et al., 2021; Bang et al., 2021) use AutoAug-
ment (Cubuk et al., 2019a). However, AutoAugment requires searching the augmentation policy
using the dataset, so it is not applicable for our setup. Instead, we use CutMix (Yun et al., 2019) and
RandAugment (Cubuk et al., 2019b) with fixed hyperparameters for requiring no policy search.

6.1 RESULTS ON NON-PERIODIC GAUSSIAN DATA STREAM

As shown in Table 2, our method outperforms the other baselines on all benchmark datasets. Espe-
cially, we can observe that the last accuracy (Alast) is better than the other baselines by large margins,
which verifies that our method can quickly adapt to the current task in online boundary-free setup.
In addition, the lower KLR score shows that our method is more robust to forgetting.

6.2 RESULTS ON PERIODIC GAUSSIAN DATA STREAM

The results of our method and other baselines on periodic-gaussian online stream is displayed in
Table 3. It is observed that our method is superior to other baselines on various datasets with higher
accuracies (AAUC, Alast). It is noteworthy that our forgetting scores (KLR) is considerably lower
compared to other baselines. We believe that our method can transfer information from the appro-
priate past, and thus be adventageous when the data distribution repeats periodically.

6.3 RESULTS ON DISJOINT TASK SPLIT

As our method is not specifically designed for the boundary-free task setup, we also compare our
method to prior arts in the disjoint setup. We summarize the results on 5-split-CIFAR-10 (i.e.,
partitions 10 classes into 5 tasks) and 5-split-CIFAR-100 in Table 4 on the conventional task-split
setup. As shown in the table, the proposed SDP outperforms other methods even in the setups with
clear task boundaries.

6.4 ABLATION STUDY

We now ablate the model for the two components, and summarize the results in Table 5. We ob-
serve that both the scheduling function and adaptive loss balancing contribute in improving the
performance. Baseline is a simple episodic-memory based method using Greedy Balancing Sam-
pler (Prabhu et al., 2020) and memory-only training (Koh et al., 2021). By using SDP distillation,
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Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC Alast ↑ KLRavg ↓ KGRavg ↑
ER 61.17±0.97 67.29±2.58 17.87±0.48 22.44±1.05 37.90±0.31 46.45±0.42 48.83±1.49 17.35±0.16
DER++ 60.70±1.07 70.41±1.83 16.47±0.53 23.45±0.49 23.07±1.22 37.88±1.42 48.72±1.49 15.56±0.50
ER-MIR 60.16±1.70 67.86±1.06 18.49±1.01 22.37±0.91 35.87±0.28 45.08±0.35 51.26±0.60 16.73±0.12
GDumb 43.01±0.45 42.97±0.91 39.88±1.90 12.87±0.83 25.01±0.13 25.37±1.91 88.84±1.91 7.82±0.11
CLIB 66.18±0.64 73.86±1.38 16.52±0.43 24.99±0.69 42.48±0.54 50.91±1.01 46.94±0.82 17.08±0.27

SDP (Ours) 69.68±0.33 78.66±0.91 5.54±0.22 18.54±1.28 46.90±0.32 55.62±0.16 33.30±0.41 21.41±0.08

Methods TinyImageNet ImageNet

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 20.67±0.25 24.84±0.49 66.65±1.17 7.14±0.12 25.25 34.93 43.04 9.39
DER++ 16.67±0.34 21.67±0.86 66.39±1.36 7.63±0.13 20.57 27.85 44.96 9.87
ER-MIR 20.74±0.36 24.57±1.00 68.40±1.72 7.10±0.06 19.52 31.85 44.73 8.65
GDumb 15.75±0.12 15.40±0.76 95.73±3.75 3.15±0.17 11.22 11.38 67.32 2.59
CLIB 25.45±0.39 30.77±1.40 61.24±1.37 7.47±0.16 32.90 38.96 39.37 8.25

SDP (Ours) 30.14±0.32 37.55±0.43 49.95±0.30 10.68±0.09 34.21 39.35 33.38 10.34

Table 3: Accuracy of continually learned model in Periodic Gaussian data stream. The results
except ImageNet are the average values of the three random seeds.

Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC Alast ↑ KLRavg ↓ KGRavg ↑
ER 73.52±0.87 58.95±2.11 24.95±1.41 25.37±1.21 49.21±1.05 39.86±0.52 58.02±0.97 13.83±0.45
DER++ 71.01±1.26 55.37±2.47 30.02±3.22 23.62±1.68 46.03±1.29 37.60±0.75 59.95±1.18 13.79±0.63
ER-MIR 71.69±0.91 56.01±2.06 28.68±4.43 23.69±0.52 48.48±1.19 37.60±0.34 62.95±1.31 12.88±0.32
GDumb 62.23±0.70 44.69±1.11 25.64±1.45 11.44±0.83 37.80±0.31 24.77±0.68 79.33±3.13 9.04±0.14
CLIB 73.62±0.87 56.21±3.30 28.68±4.43 23.69±0.52 50.26±1.06 40.05±0.71 59.48±2.00 12.23±0.46

SDP (Ours) 76.89±1.22 66.19±3.48 15.86±1.74 25.68±2.61 55.94±1.55 50.26±1.41 46.35±2.44 16.04±0.80

Table 4: Results of disjoint task split on CIFAR-10 / 100. Each of datasets are split into 5 tasks
we have 1.7∼5.6% improved AAUC and 5.2∼8.4% improved Alast compared to baseline. Since we
didn’t apply adaptive loss balancing, we use a fixed balancing parameter optimized by grid search
on CIFAR-10 non-periodic Gaussian stream. By applying adaptive loss balancing, we have further
improved performance, except for Alast in CIFAR-100 periodic-Gaussian setup. It still outperforms
baseline and other methods by large margins.

Methods
CIFAR-10 CIFAR-100

Gaussian Periodic-Gaussian Gaussian Periodic-Gaussian
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Baseline 62.37±0.52 64.22±0.97 64.95±0.60 72.55±0.71 42.02±0.58 43.19±0.32 40.54±0.23 48.15±0.39
+ Scheduling Function 64.04±0.21 69.47±1.79 67.79±0.21 77.87±0.24 45.73±0.40 50.53±0.18 46.14±0.05 56.56±0.36
+ Data-driven Balancing 66.51±0.42 76.29±0.50 69.68±0.33 78.66±0.91 46.34±0.64 54.93±0.56 46.90±0.32 55.62±0.16

Table 5: Ablation Study

7 CONCLUSION

For working in a better realistic continual learning scenario, we propose a continual learning setup
of a continuous data stream without explicity task boundary defined, called boundary-free continual
learning, with the constraint of learning the data in online manner. We also investigate the periodicity
of the data distribution. As the existing evaluation metrics for continual learning setup assumes the
explicit task boundaries, they are not readily applicable in the boundary-free setup. Thus, we propose
two new information theoretic evaluation metrics to quantify the amount of information loss and
gain over the data stream, named knowledge loss and knowledge gain. To address the continuous
data stream to incrementally update the model, we propose a method to leverage the previously
learned knowledge by a skewed bell shaped weighting function in a distillation framework, named
scheduled data prior. For further generalization to different benchmarks, we propose to balance the
pace of learning of knowledge in the past and the present in a data-driven manner. In our empirical
evaluations, the proposed method outperforms comparable prior arts that update the weights per
each data batch in a stream in the proposed boundary-free setup as well as the conventional disjoint
task-split setup.

Limitations. Since our method does not leverage any notion of periodicity, it is expected to im-
prove the method by considering the fact that the data stream has a periodic, though we may not
know the duration of the period.
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A APPENDIX

A.1 DETAILS ABOUT GAUSSIAN AND PERIODIC GAUSSIAN DATA STREAM SETUP
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(a) Gaussian data stream
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(b) Periodic-Gaussian data stream

Figure 4: Distribution for (a) Gaussian and (b) Periodic Gaussian data streams

The resulting distribution with N = 4 is depicted in Fig. 4-(a). The periodic Gaussian distributions
with N = 4 and R = 5 are illustrated in Fig. 4-(b).

A.2 DERIVATION OF SDP RATIOS FROM MEAN AND VARIANCE

The weights of EMA is same as the pmf of geometric distribution, with k-th weight wα(k) obtained
as:

wα(k) = α(1− α)k−1 (13)

when α is the EMA ratio. Using the known mean and variance of geometric distribution, Thus,
mean µα of EMA is obtained as:

µα =

∞∑
k

kwα(k) =
1

α
(14)

The variance σ2
α is:

σ2
α =

∞∑
k

k2wα(k)− µ2
α =

1− α

α2
(15)

Thus,
∞∑
k

k2wα(k) =
1− α

α2
+

1

α2
=

2− α

α2
(16)

Using the definition of SDP . 5, we obtain w(α,β)(k), the k-th weights of SDP with two ratios α and
β as:

w(α,β)(k) =
α

α− β
wβ(k)−

β

α− β
wα(k) (17)

The mean µ(α,β) of SDP is calculated as:

µ(α,β) =

∞∑
k

kw(α,β)(k)

=
α

α− β

∞∑
k

kwβ(k)−
β

α− β

∞∑
k

kwα(k)

=
α

β(α− β)
− β

α(α− β)

=
α+ β

αβ
=

1

α
+

1

β
(18)
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Also, the variance σ2
(α,β) of SDP is calculated as:

σ2
(α,β) =

∞∑
k

k2w(α,β)(k)− µ2
(α,β)

=
α

α− β

∞∑
k

k2wβ(k)−
β

α− β

∞∑
k

k2wα(k)− µ2
(α,β)

=
α(2− β)

β2(α− β)
− β(2− α)

α2(α− β)
− (α+ β)2

α2β2

=
α2 + β2 − αβ(α+ β)

α2β2
(19)

Thus, the squared coefficient of variation c2 = σ2

µ2 is:

c2 =
(α+ β)2 − αβ(α+ β + 2)

(α+ β)2
(20)

Recall
µ(α,β) =

α+ β

αβ
(21)

Solving these equations for α+ β and αβ by substitution, we get

αβ =
2

c2 − µ2 + 1
(22)

α+ β =
2µ

c2 − µ2 + 1
(23)

Solving this equations for α and β using quadratic formula, we get:

α =
1 +

√
2c2 + 2

µ − 1

µ(1− c2)− 1
, β =

1−
√
2c2 + 2

µ − 1

µ(1− c2)− 1
. (24)

A.3 ANALYSIS ON STANDARD DEVIATION OF GAUSSIAN DISTRIBUTION

Methods Sigma=0 Sigma=10

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KRLavg ↓ KGRavg ↑
ER 73.52±0.87 58.95±2.11 24.95±1.41 25.37±1.21 55.97±0.85 58.59±2.56 23.36±1.39 21.52±0.92
DER++ 71.01±1.26 55.37±2.47 30.02±3.22 23.62±1.68 56.12±0.14 60.54±2.37 23.60±2.12 22.57±0.98
ER-MIR 71.69±0.91 56.01±2.06 28.68±4.43 23.69±0.52 56.48±0.18 59.38±2.83 25.04±1.67 21.72±0.16
GDumb 62.23±0.70 44.69±1.11 25.64±1.45 11.44±0.83 46.45±0.68 42.62±0.64 35.47±0.51 11.69±0.32
CLIB 73.62±0.87 56.21±3.30 28.68±4.43 23.69±0.52 63.01±0.31 65.24±2.10 20.79±1.64 22.52±1.92

SDP (Ours) 76.89±1.22 66.19±3.48 15.86±1.74 25.68±2.61 66.51±0.42 76.29±0.50 10.75±1.48 23.19±1.16

Methods Sigma=25 Sigma=50

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 60.42±0.80 68.74±2.45 18.32±1.42 26.89±1.81 58.25±0.85 58.59±2.56 23.36±1.39 21.52±0.92
DER++ 58.25±0.73 68.58±0.79 16.96±1.67 27.49±2.10 64.39±0.91 75.82±1.38 12.56±0.88 26.39±0.49
ER-MIR 60.94±0.92 69.21±0.49 17.94±0.99 25.67±0.93 66.82±0.44 76.38±0.31 13.84±0.11 25.20±0.69
GDumb 41.19±0.18 41.79±0.82 43.04±2.11 12.45±0.24 41.65±0.16 42.62±0.59 39.20±2.20 12.98±0.75
CLIB 66.39±0.09 71.41±1.32 19.74±0.97 26.94±0.69 69.62±0.42 72.31±1.21 7.42±1.12 12.87±1.51

SDP (Ours) 69.97±0.37 81.95±0.89 4.23±0.64 20.67±2.30 73.44±0.26 82.33±0.26 3.57±0.26 16.24±0.59

Table 6: Comparison of Accuracy for different values of standard deviation for Gaussian data Stream
in CIFAR-10

We test CL methods on 4 different values of standard deviation for Gaussian data stream in CIFAR-
10 and CIFAR-100. SDP outperform other methods in all tested values of sigma, showing that our
model is robust to how spread out the distribution is.
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Methods Sigma=0 Sigma=10

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 49.21±1.05 39.86±0.52 58.02±0.97 13.83±0.45 36.93±0.77 40.93±0.35 51.77±0.87 17.42±0.50
DER++ 46.03±1.29 37.60±0.75 59.95±1.18 13.79±0.63 28.77±0.67 34.48±0.62 48.83±1.49 17.35±0.16
ER-MIR 48.48±1.19 37.60±0.34 62.95±1.31 12.88±0.32 34.76±1.20 37.20±2.06 57.23±1.14 16.46±0.68
GDumb 37.80±0.31 24.77±0.68 79.33±3.13 9.04±0.14 28.81±0.74 25.38±0.26 86.75±2.07 8.54±0.34
CLIB 50.26±1.06 40.05±0.71 59.48±2.00 12.23±0.46 42.79±0.65 43.81±0.58 48.59±1.78 15.96±0.26

SDP (Ours) 55.94±1.55 50.26±1.41 46.35±2.44 16.04±0.80 46.34±0.64 54.93±0.56 36.56±0.92 18.77±0.27

Methods Sigma=25 Sigma=50

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 49.21±1.05 39.86±0.52 58.02±0.97 13.83±0.45 32.86±0.39 45.11±1.11 50.75±1.05 17.38±0.43
DER++ 46.03±1.29 37.60±0.75 59.95±1.18 13.79±0.63 31.25±1.59 46.00±1.65 47.76±0.64 17.57±0.06
ER-MIR 48.48±1.19 37.60±0.34 62.95±1.31 12.88±0.32 31.85±0.17 44.60±0.17 53.32±0.98 16.40±0.30
GDumb 37.80±0.31 24.77±0.68 79.33±3.13 9.04±0.14 23.98±0.13 24.30±0.54 90.32±1.50 7.66±0.17
CLIB 40.06±0.20 46.90±0.87 49.71±0.60 16.51±0.09 50.26±1.06 40.05±0.71 59.48±2.00 12.23±0.46

SDP (Ours) 43.88±0.57 55.32±0.50 32.92±0.68 20.00±0.24 46.50±0.42 55.97±0.33 32.89±0.25 21.57±0.10

Table 7: Comparison of Accuracy for different values of standard deviation for Gaussian data Stream
in CIFAR-100

Algorithm 1 Pseudocode for SDP

1: Input model fθ, EMA models fθα , fθβ , EMA ratios α, β, MemoryM, Training data streamD,
Learning rate µ

2: θα←θ, θβ ←θ ▷ EMA models initialize
3: for (x, y) ∈ D do ▷ sample arrives from training data stream D
4: Update M ← GreedyBalancingSampler (M, (x, y)) ▷ Update Memory
5: θSDP(t) =

α
α−β θβ(t)−

β
α−β θα(t). ▷ Calculate SDP model parameters

6: Update γy ← UpdateConfidenceMean (fθSDP(x), y) ▷ Update class-wise confidence

7: Update λt ←
∑N−1

i=0 γi

N ▷ Update balancing parameter λt

8: Sample (X,Y )← RandomSample(M) ▷ Get batch (X,Y ) from Memory
9: LCE(X,Y ) = CrossEntropyLoss(fθX,Y ) ▷ Calculate cross-entropy loss

10: LKD(X) = ∥f(X)− fθSDP(X)∥22 ▷ Calculate distillation loss

11: ηk =
|∇fLCE|
|∇fLKD| ▷ Obtain batch balancing factor ηk

12: L(X,Y ) = λt · LCE(X,Y ) + (1− λt) · ηk · LKD(X) ▷ Calculate total loss
13: θ ← θ − µ · ∇θL(X,Y ) ▷ Update model
14: Update θα ← (1− α) · θα + α · θ ▷ Update EMA models
15: Update θβ ← (1− β) · θβ + β · θ
16: end for
17: Output fθ

A.4 PSEUDOCODE FOR THE SDP FRAMEWORK

Algorithm 1 provides detailed pseudocode for SDP. When the sample enters in time order, the mem-
ory is updated by Greedy Balancing Sampler (Prabhu et al., 2020). In addition, update the balancing
parameter λ based on the confidence obtained by running inference on new samples using SDP
model. SDP model parameters are obtained by weighted sum of two EMA model parameters. The
updated SDP serves as a data prior for distillation during training. After training the model using
the sampled batch (X,Y ), update the EMA model fθα , fθβ .

A.5 PSEUDOCODE FOR MEASURING KLR AND KGR

Algorithm 2 show how KLR and KGR are measured in practice. We obtain predictions for the
test set at two different timestamps, t1 and t2. Then we calculate the joint probability for GT,
prediction at t1, and prediction at t2. KL and KG are calculated as the conditional mutual in-
formation. Line 6 and line 7 are derived from the equation for the conditional mutual informa-
tion I(X;Y |Z) = I(X,Z;Y ) − I(Z;Y ), and equation for computing the mutual information
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Algorithm 2 Computing KLR and KGR

1: Input Test set (X,YGT), Previous model output Y1, Current model fθ(t2), Set of Possible Labels
YGT,Y1,Y2

2: Y2 =
[
argmax fθ(t2)(x) for x ∈ X

]
▷ Inference test set with current model

3: for (ygt, y1, y2) ∈ (YGT,Y1,Y2) do
4: P (ygt, y1, y2) =

|{(ygt,y1,y2)∈(YGT,Y1,Y2)}|
|YGT| ▷ Calculate joint probability

5: end for
6: KL(t1, t2) =

∑
ygt∈YGT

∑
y1∈Y1

∑
y2∈Y2

P (ygt, y1, y2) log
P (y1)P (ygt, y2)

P (ygt, y1)P (y1, y2)

▷ Calculate KL by Conditional Mutual Information

7: KG(t1, t2) =
∑

ygt∈YGT

∑
y1∈Y1

∑
y2∈Y2

P (ygt, y1, y2) log
P (y2)P (ygt, y1)

P (ygt, y2)P (y1, y2)

▷ Calculate KG by Conditional Mutual Information

8: TK(t1) =
∑

ygt∈YGT

∑
y1∈Y1

P (ygt, y1) log
P (ygt, y1)

P (ygt)P (y1)

▷ Calculate TK at t1 by Mutual Information
9: H(YGT) = −

∑
ygt∈YGT

P (ygt) logP (ygt) ▷ Calculate the amount of information (entropy) in GT label

10: KLR(t1, t2) =
KL(t1, t2)

TK(t1)
▷ Obtain KLR

11: KGR(t1, t2) =
KG(t1, t2)

H(YGT)− TK(t1)
▷ Obtain KGR

12: Output Y2, KLR(t1, t2), KGR(t1, t2)
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Figure 5: AAUC and Alast of various methods compared to training time, on Non-Periodic Gaussian
data stream in CIFAR-10.

I(X;Y ) =
∑
y∈Y

∑
x∈X

P (x, y) log

(
P (x, y)

P (x)P (y)

)
. The marginal probabilities are obtained by sum-

mation over other dimensions.

A.6 COMPUTATIONAL COMPLEXITY

We compare the computational complexity by reporting the training time on a single NVIDIA
GeForce RTX 2080Ti. ’EMA only’ is a method using EMA model for distillation, without us-
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Figure 6: Visualization of balancing parameter λt over time, on CIFAR-10 Gaussian and Periodic-
Gaussian data stream.

ing data-driven loss balancing. We did not report GDumb since GDumb does not train at training
time. Instead, GDumb trains from scratch at inference time, so their computational cost depends on
the frequency of inference queries. SDP shows good trade-off between computational complexity
and performance, compared to other methods.

A.7 DISCUSSION ON THE ADDITIONAL MEMORY COST

Method Additional Memory
Theoretical ImageNet (MB)

ER Ns ·Nc · S 3,010.6
DER++ Ns ·Nc · S +Ns ·N2

c 3,090.6
ER-MIR Ns ·Nc · S +Nθ 3,057.3
GDumb Ns ·Nc · S 3,010.6
CLIB Ns ·Nc · S 3,010.6
SDP (Ours) Ns ·Nc · S + 2 ·Nθ 3,100.0

Table 8: Additional memory cost for storing models, replay buffers, and logits. We report theoretical
values and actual memory cost on ImageNet.

We compare the additional memory required to save models or samples in Table. 8. SDP has an
additional memory cost of Ns · Nc · S + 2 · Nθ, where Ns is the number of exemplars stored
per class, Nc is the number of classes, S is the size of an image, and Nθ is the size of model
parameters. Overall, SDP uses more memory than other compared methods since it requires storing
model weights for SDP while other methods only store samples in episodic memory.

Since the resolution of the image in the real world is larger than or similar to the resolution of the
ImageNet images, we compare the memory costs in the ImageNet as the closest baseline for the real
world applications. As shown in Table. 8, the extra memory cost of storing the model checkpoints
is negligible compared to the memory cost of episodic memory.

Storing model parameters from previous tasks for regularization or distillation is a common prac-
tice in CL with task boundaries (Kirkpatrick et al., 2017; Chaudhry et al., 2018a; Wu et al., 2019).
However, such methods were not actively studied in task-free CL, since one cannot decide which
checkpoint to store. For comparison with other regularization or distillation methods, EWC (Kirk-
patrick et al., 2017) requires 2 · T · Nθ where T is the number of tasks, EWC++ (Chaudhry et al.,
2018a) requires Ns ·Nc · S + 3 ·Nθ (3150.6MB on ImageNet), RWalk (Chaudhry et al., 2018a) re-
quires Ns·Nc·S+5·Nθ (3244.1MB on ImageNet), and BiC (Wu et al., 2019) requires Ns·Nc·S+Nθ

(3057.3MB on ImageNet).

A.8 VISUALIZATION OF LOSS BALANCING PARAMETER OVER TIME

In this section, we discuss the behavior of the data-driven balancing parameter λt over time. λt

learns to adjust the weight of distillation loss to follow the performance of the SDP model. Thus, in
the early phase where SDP model’s performance is low, the distillation loss has small weights (high
λt), and as the model learns and SDP model’s performance increases, the weight for the distillation
loss becomes larger (lower λt). We provide visualization of λt over time in CIFAR-10 Gaussian
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Figure 7: Comparison of different values of mean and coefficient of variation, evaluated on CIFAR-
10 non-periodic Gaussian data stream.
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Figure 8: Comparison of different values of EMA ratio for EMA model in Table 1, for CIFAR-10
Gaussian non-periodic Gaussian data stream.

and Periodic Gaussian data stream in Fig. 6, where this behavior is observed. Since the model’s
predictions are almost random in the initial phase, the coefficient tends to start with 1 and decrease
with the training progress.

A.9 HYPERPARAMETER TUNING ON SDP

We study the effect of two hyperparameters of SDP, mean µ and coefficient of variation c2, by grid
search on CIFAR-10 non-periodic Gaussian setup, and summarize the results in Fig. 7. We observe
some dependence on SDP mean, but not much on coefficient of variation. Note that the valid range
for coefficient of variation is 0.5− 1

µ < c2 < 1− 1
µ . Since it is not much relevant to performance,

we choose the value in the middle of valid range, c2 = 0.75 for all experiments. SDP mean has
some impact on the performance, so we choose the optimal value found on CIFAR-10 non-periodic
Gaussian setup, µ = 10, 000. Since dataset or setup-specific hyperparameter search is not desirable
in CL scenario, we use the same value, µ = 10, 000, for all datasets and setups.

A.10 HYPERPARAMETER TUNING ON EMA

We also report hyperparameter tuning result for EMA model in Table. 1, searched on CIFAR-10
non-periodic Gaussian setup, which is same as the setup on Table. 1. The performance did not vary
much depending on the EMA ratio α, and we used α = 0.001 as it showed highest performance.

A.11 ONLINE CL WITHOUT REPLAY

We consider an extreme scenario where episodic memory is not available. Since other CL methods
covered in this work depend on memory replay, we compare only with basic fine-tuning as baseline.
We summarize the result on Table 9. We observed that applying SDP to the baseline (fine-tuning)
improves AAUC by 3.07% for Gaussian data stream and 5.03% for Periodic Gaussian data stream
on CIFAR-10. While SDP improves performance, the overall performance falls behind SDP using
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Methods Gaussian Periodic-Gaussian
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Finetune 37.78±1.28 19.26±1.25 31.94±0.85 21.99±1.53
SDP (Ours) 40.85±0.90 20.62±1.56 36.97±1.19 25.35±2.65

Table 9: CL with no episodic memory, on Gaussian and Periodic Gaussian data stream in CIFAR-10.

memory replay by 25.66% on Gaussian data stream and 32.70% on Periodic Gaussian data stream.
Closing this gap would be an interesting research direction for future work.

A.12 ABLATIONS ON THE NUMBER OF REPETITIONS IN PERIODIC CONTINUAL LEARNING

Methods R = 2 R = 3

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KRLavg ↓ KGRavg ↑
ER 58.51±1.41 64.19±5.63 22.71±2.64 25.00±2.28 59.77±0.77 63.44±3.13 25.67±1.30 26.34±1.71
DER++ 56.68±1.28 63.80±4.39 22.33±2.11 25.95±1.29 58.79±1.21 64.82±3.18 22.21±1.05 27.10±2.06
ER-MIR 58.89±1.04 61.87±4.13 25.51±2.17 24.99±1.76 59.92±1.82 63.70±2.15 24.67±1.16 26.56±0.15
GDumb 44.28±0.20 39.87±0.68 40.98±2.92 11.92±0.47 43.62±0.06 42.07±0.38 37.54±2.23 12.48±0.27
CLIB 64.53±0.06 69.60±0.76 19.87±0.91 26.47±0.10 65.41±1.14 71.52±0.32 19.24±1.08 27.64±1.13
SDP (Ours) 73.01±0.04 81.61±0.11 3.63±0.56 16.88±0.83 72.81±0.05 81.45±0.25 3.71±0.63 16.16±0.41

Methods R = 4 R = 5

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 60.34±1.91 67.84±5.10 19.14±0.17 25.69±1.86 61.17±0.97 67.29±2.58 17.87±0.48 22.44±1.05
DER++ 58.71±1.10 68.77±3.90 18.51±0.44 26.12±0.95 60.70±1.07 70.41±1.83 16.47±0.53 23.45±0.49
ER-MIR 59.69±2.00 64.58±2.58 23.01±1.03 23.22±1.02 60.16±1.70 67.86±1.06 18.49±1.01 22.37±0.91
GDumb 43.28±0.15 42.17±0.52 43.86±3.64 12.94±0.83 43.01±0.45 42.97±0.91 39.88±1.90 12.87±0.83
CLIB 66.37±0.28 72.06±1.05 17.45±1.38 26.42±0.71 66.18±0.64 73.86±1.38 16.52±0.43 24.99±0.69
SDP (Ours) 72.74±0.09 81.54±0.30 4.20±0.13 17.51±1.31 69.68±0.33 78.66±0.91 5.54±0.22 18.54±1.28

Table 10: Comparison of Accuracy for different number of repetitions (R) for Periodic Gaussian
data stream in CIFAR-10

We test CL methods on 4 different number of repetition (R) for Gaussian data stream in CIFAR-10
and CIFAR-100. As seen in Table 10, SDP outperform other methods in all tested values of R,
showing that our model is robust to various number of repetitions.

A.13 CONTINUAL LEARNING ON GAUSSIAN MIXTURE DATA DISTRIBUTION

In the previous experiments, we used Gaussian distribution for data stream, since data as the sum of
independent random variables tend to follow Gaussian distribution due to the Central Limit Theo-
rem. However, a real-world data may not strictly follow Gaussian distribution, so we also consider a
more complex distribution than a Gaussian distribution. To test the performance of CL methods on
a more complex data distribution, we use Gaussian Mixture, which is a mixture of multiple Gaus-
sian distributions. We model the distribution of each class as the mixture of two Gaussians, where
mean for each Gaussian is randomly sampled from [0, 1), standard deviation for each Gaussian is
randomly sampled from [0, 0.2), and mixture weight for each class is randomly sampled from [0, 1).
Table 11 summarizes the results for Non-Periodic and Periodic Gaussian Mixture data stream. We
observe that SDP still outperforms other methods even in a more complex Gaussian Mixture data
stream setup.

Methods Gaussian Mixture Periodic Gaussian Mixture

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑ AAUC ↑ Alast ↑ KRLavg ↓ KGRavg ↑
ER 59.89±3.29 62.28±3.77 22.01±2.57 23.51±1.56 63.86±0.91 68.63±2.53 16.82±1.23 22.46±0.39
DER++ 59.06±3.22 62.60±5.16 21.40±2.93 25.29±3.34 63.17±0.59 68.71±2.17 15.64±1.73 24.52±1.28
ER-MIR 57.95±2.77 61.01±5.14 23.39±4.07 23.57±2.96 62.71±0.58 68.97±1.58 17.35±1.61 23.64±1.17
GDumb 43.13±1.71 42.42±1.94 36.65±3.51 11.69±0.31 41.61±0.02 39.60±0.18 48.13±3.45 12.73±0.63
CLIB 65.98±2.24 68.81±1.81 18.66±1.29 24.07±1.43 68.00±0.89 75.13±2.06 15.20±1.95 26.01±1.11
SDP (Ours) 68.85±2.80 76.22±0.67 4.93±0.26 17.63±2.99 70.40±1.02 79.96±0.40 4.19±0.34 17.07±1.17

Table 11: Comparison of Accuracy for Periodic (R = 5) and Non-Periodic Gaussian Mixture data
stream in CIFAR-10
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Figure 9: Data distribution of randomly selected 4 classes in the mixed-period Gaussian Mixture
data distribution setup.

We also observe in Sec. A.16 that in a real-world data, some classes may have different period
with others. To model such scenario, we assign randomly assign period for each class from 1, 2, 4,
where the length of data stream is 4. For distribution of each class, we use Gaussian Mixture with
randomly selected two Gaussians as in the previous experiments. In summary, each class distribution
is a periodic two-component Gaussian mixture with randomly selected means, standard deviations,
mixture weights, and periods. We visualize an example of such distribution in Fig. 9. We summarize
the result on this Gaussian Mixture setup with mixed periods in Table 12. SDP outperforms other
methods even on the mixed-period Gaussian Mixture setup with complex data distributions, which
indicates that SDP works well on various data distributions.

Methods Multi-Periodic Gaussian Mixture

AAUC ↑ Alast ↑ KLRavg ↓ KGRavg ↑
ER 60.24±0.94 66.79±0.63 18.83±0.46 26.38±0.24
DER++ 59.97±1.79 70.13±0.81 17.18±0.84 28.35±1.12
ER-MIR 59.45±1.83 67.34±1.25 19.73±1.92 27.06±1.22
GDumb 42.35±1.18 40.25±1.88 37.62±3.54 11.60±1.11
CLIB 66.78±1.12 72.96±0.78 14.98±0.80 26.21±0.98

SDP (Ours) 69.38±1.21 79.20±0.78 4.92±0.10 18.84±1.00

Table 12: Comparison of Accuracy for Periodic Gaussian Mixture data stream with mixed period
for each class.

A.14 ACCURACY TRENDS ON TRAINING PHASE

We visualize the accuracy trends for the tested CL methods in Fig. 10. From the trends, we can
observe that SDP performs increasingly well with the training progress, since distillation becomes
more important as the amount of knowledge in the past models increase. We also observe that
performance in early phases tend to depend on memory management and usage, as methods that use
balanced memory and train only on memory, i.e. CLIB, EMA, SDP, show much higher accuracy
than methods that use reservoir sampling and experience replay, i.e. ER, DER, MIR, in the early
phases. This is likely because reservoir sampling is highly class-imbalanced in the early phases.
As the training progresses, the reservoir memory becomes close to balanced, thus the gap between
two memory management closes in the later phase. However, in the mid-to-later phase, the effect
of distillation comes into play, and the performance of methods that use balanced memory (CLIB,
EMA, SDP) deviates depending on the distillation method used, as SDP ≫ EMA > CLIB (No
distillation).
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Figure 10: Accuracy trends for CL methods over the course of training, on CIFAR-10 Non-Periodic
Gaussian setup.

Methods CLEAR-10

AAUC ↑ Alast ↑
ER 44.02±0.84 52.91±1.96
DER++ 38.33±2.09 49.82±3.28
ER-MIR 44.44±1.73 56.18±1.32
GDumb 38.60±0.29 40.73±1.71
CLIB 53.49±0.75 66.91±1.27

SDP (Ours) 56.82±0.35 72.97±1.49

Table 13: Comparison of Accuracy for Periodic Gaussian data stream with natural domain shift
using CLEAR-10.

A.15 PERIODIC CONTINUAL LEARNING WITH NATURAL DOMAIN SHIFTS

We conduct additional experiments using the recently proposed CLEAR-10 (Lin et al., 2021) dataset
that has real-world domain shifts, i.e., the visual concept drift of objects over time in the data stream.
It is of particular importance as many real-world systems such as an e-commerce platform would
experience gradual domain shifts in the streamed data for the natural temporal evolution of concepts
(e.g., computers in 2020 look different from these in 2010), while being subjected to (periodically)
changing data distributions. Note that in the original CLEAR-10 benchmark, the data distribution is
uniform and stationary. We make a Periodic Gaussian data stream with each bucket as a period and
frequency of each class follows a Gaussian distribution within the bucket, as explained in Sec. 3.1.
We report the results in Table 13. SDP outperforms other methods by significant margins, even
though the Greedy Balancing Sampler we use for memory management is reported as not suitable
for domain shifts (Mai et al., 2022). It indicates that the distillation part in SDP can effectively deals
with domain shifts in the data stream.

A.16 EXAMPLES OF REAL-WORLD PERIODIC DATA

In addition to the examples mentioned in Figure 1, many search data follow periodic distribution as
shown in Figure 11 and Figure 12. As we can see in Fig. 12, search frequency of seasonal fruits and
home appliances, which are greatly affected by the season, follows the periodic distribution with the
period of a year. In the case of clothing, the period is 6 months as we can see in Figure 11. It can be
seen that almost similar distribution is repeated although there is a slight difference in distribution for
each period. In order to address these real-world distributions, we propose the periodic benchmark.
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Figure 11: Search data with 6-month period
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Figure 12: Search data with 1-year period
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