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ABSTRACT

The cost of annotating transcriptions for large speech corpora
becomes a bottleneck to maximally enjoy the potential capac-
ity of deep neural network-based automatic speech recogni-
tion models. In this paper, we present a new training pipeline
boosting the conventional active learning approach targeting
label-efficient learning to resolve the mentioned problem. Ex-
isting active learning methods only focus on selecting a set
of informative samples under a labeling budget. One step fur-
ther, we suggest that the training efficiency can be further im-
proved by utilizing the unlabeled samples, exceeding the la-
beling budget, by introducing sophisticatedly configured un-
supervised loss complementing supervised loss effectively.
We propose new unsupervised loss based on consistency reg-
ularization, and we configure appropriate augmentation tech-
niques for utterances to adopt consistency regularization in
the automatic speech recognition task. From the qualitative
and quantitative experiments on the real-world dataset and un-
der real-usage scenarios, we show that the proposed training
pipeline can boost the efficacy of active learning approaches,
thus successfully reducing a sustainable amount of human la-
beling cost.

Index Terms: speech recognition, active learning, semi-
supervised learning, consistency regularization.

1. INTRODUCTION

End-to-End Automatic Speech Recognition (E2E-ASR) mod-
els [1, 2, 3, 4] have achieved impressive improvements in
Large Vocabulary Automatic Speech Recognition (LVASR).

However, although they achieve state-of-the-art performance [5,

6], the methods require more number of samples, decreasing
the economical efficiency considering the high labeling cost
of the speech data. The cost to annotate labels might be more
troublesome in ASR because the cost to transcribe utterances
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is more expensive due to its error-prone property compared to
simple classification problems such as object class for image
classification. The reason E2E-ASR models require enormous
data stems from the fact that they are trained in end-to-end
without strong inductive bias such as explicit acoustic and
language models while having lots of model parameters [5].
Therefore, maximizing the training efficiency in labeling cost
is necessary for the state-of-the-art E2ZE-ASR model.

Active Learning (AL) approach, has been studied to re-
duce the labeling cost by selecting samples most effective
for a model training from many unlabeled candidates.The
selected samples are annotated by human experts, so Human-
Labeled Samples (HLS) become the important anchors in
training the model. However, the number of HLS is restricted
due to the labeling budget, so we usually cannot get sufficient
amount of the labeled data for model capacity. Furthermore,
even the definitions of effectiveness are different among AL
studies, the consensus is that the effective samples for training
are in most case unfamiliar and uncertain ones to the current
model. Therefore, even HLS complements the model to han-
dle unfamiliar samples, it cannot fully exploit the potential of
E2E-ASR models because of constrained labeling budget and
bais existing in the selected HLS.

To mitigate such problems in AL without additional label-
ing cost, we propose to utilize the unlabeled samples which
are not selected for HLS. Inspired by Semi-Supervised Learn-
ing (SSL), we use the unlabeled samples, relatively familiar
and confident in view of the current model contrary to HLS,
by generating their pseudo-labels (Pseudo-Labeled Samples
(PLS)) and appending the samples to the training dataset.

Unfortunately, simply introducing PLS would not lead to
the improvement of model performance mainly because of
the two reasons. One is that if PLS are selected conserva-
tively, PLS are too familiar to model, so they do not incur
any effective variation in model parameters after training. the
other is that if PLS are selected speculatively, they are likely
to have noisy pseudo-labels, consequently hurting model per-
formance.

Therefore, in this paper, we propose a training pipeline to
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Fig. 1: An overview of the training pipeline proposed in this
paper.

overcome the limitations of both AL and SSL.To this end, we
introduce Consistency Regularization (CR) [7, 8, 9] technique
which regularizes the side-effect of noisy pseudo-labels by
forcing a model to predict consistently on both of genuine
and distorted versions of a sample. The experimental results
suggest that our new training pipeline can fully utilize PLS
in training. The overview of the training pipeline proposed in
this paper is depicted in Figure 1.

CR is mostly applied in computer vision tasks [7, 8, 9] and
CR has not been actively considered in ASR task because of
its incompatibility to distortions (i.e., augmentations), which
has been reported to be effective for vision tasks. However, we
show that appropriate augmentations, which do not corrupt
essential linguistic information, can enable CR on utterances
for ASR. By introducing loss for CR to train objective with
the carefully configured augmentations, our training pipeline
restores the degradation of performance caused by restricted
labeling budget in AL without any additional labeling cost.
Consequently, it achieves a significant reduction of the label-
ing cost, as well as minimizing the performance degradation.

To validate the proposed training pipeline, we conduct ex-
tensive experiments on the real-world samples acquired from
services deployed to end-users, which provides voice search
and voice control for IoTs. The amount of collected samples
is about 500 hours of utterances recorded from various de-
vices and users. Comparing with conventional AL on such
a dataset, our proposed training pipeline boosts the perfor-
mance of the model by 12.76% and 4.02% in Character-level
Error Rate (CER) when the labeling budget is 1/3 and 1/10 of
unlabeled samples, respectively.

In summary, our contributions to achieving such an objec-
tive can be summarized as threefold: 1) this work adopts con-
sistency regularization on samples with noisy pseudo-labels
in E2E-ASR model training to boost the effect of active learn-
ing for label-efficiency. 2) we configure the feasible augmen-
tations for utterances to adapt consistency regularization for
ASR, and 3) we verify and analyze the efficacy of the pro-
posed training pipeline including consistency regularization
with extensive real-world data and realistic environments.

2. RELATED WORKS

Active Learning for ASR: Studies on AL can be categorized
into three major approaches in how they select the samples to
be annotated by human experts: uncertainty-based approaches
[10, 11, 12, 13, 14, 15], diversity-based approaches [16, 17],
and expected-model-change approaches [18, 19]. However,
for ASR, predicting uncertainty or diversity for utterances
is more difficult than those of images, because transcription
is configured as a sequence of labels. It is required to com-
pute uncertainty or diversity for a sample by jointly consid-
ering all labels consisting of the sample. The studies [20, 21]
demonstrate that the length-normalized path-probability from
the decoder in E2E-ASR model can successfully represent the
uncertainty of a sequence of labels, and the works [18, 19]
propose the approximate metrics representing the expected-
model-change for ASR task.

Semi-Supervised Learning with Pseudo Labeling: SSL
[22, 23, 24] provide practical ways to data-hungry deep neural
network models by extending training dataset from enormous
unlabeled samples without supervision. One of their main ap-
proaches is generating pseudo-labels [23, 24] for unlabeled
samples by models. Moreover, the works [25, 26, 27] have
studied ways to adopt such a pseudo-labeling approach to
ASR, and present competitive or even superior results [26]
with well-designed training algorithms.

There have been some works [11, 12] trying to achieve
synergies from combined AL and SSL. However, the task
considered in [11] was a type of call-type classification as-
signing one or more independent call-type(s) to each utter-
ance, not adequate for ASR aligning a sequence of labels
to each utterance. Furthermore, the work [12] considered an
only acoustic model by maximizing the lattice entropy re-
duction, while we target E2E-ASR model consisting of both
acoustic model and language model.

Consistency Regularization: Recently, Consistency Regu-
larization (CR) techniques [28, 29, 7, 8, 30] have been ac-
tively studied for SSL. They achieve the state-of-the-art re-
sults in situation of extremely small ratio of dataset are HLS
and the other samples in dataset are PLS. Because CR forces
model to keep their prediction even distortions are applied to
input samples, it additionally impose an unsupervised objec-
tive to the supervised objective using labels. Still, the stud-
ies of consistency regularization have not been popular in the
ASR task because of the inherent fragility of the utterances
on distortions against the robustness of images under distor-
tions. To resolve such problems, we introduce the appropri-
ate augmentations which distorting acoustic features of ut-
terances while minimizing the distortions on their linguistic
information so that ASR models can enjoy the same benefits
from CR as it did in those of computer vision tasks.
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Fig. 2: Character-Level Error Rate (CER) of model trained
by each subset, which is split from all unlabeled samples in
equal sizes (386.5/5 = 77.3 hours) after sorted by each uncer-
tainty metric. sety|5 consists of the most uncertain samples

according to each uncertainty metric.

3. UNCERTAINTY-BASED ACTIVE LEARNING

3.1. Length-Normalized Path-Probability

Here, we use an uncertainty-based approach in AL since it
is relatively simple, but leads to a substantial reduction in la-
beling cost with marginal performance degradation [13, 15].
Therefore, we select the most uncertain (i.e., the most effec-
tive for training) samples from unlabeled samples. However,
unlike single-label classification tasks where the uncertainty
can be calculated simply with the top-1 class posterior prob-
ability such as image-classification, ASR requires to consider
the joint probability of a sequence of labels (i.e., transcrip-
tion).

The path-probability for a decoded sequence of labels
calculated at the decoder of E2E-ASR models is the most
straight-forward metric since it represents the joint probabil-
ity of the decoded labels. Moreover, we can easily improve
the quality of path-probability through beam-search decod-
ing considering multiple paths during decoding and several
normalization techniques including length-normalization [20,
21]. Therefore, we utilize the beam-search decoding with
width=5 and design a length-penalty (Ip(y)) for the length-
normalization following [31]. The length-normalized path-
probability (pprob(y)) for a given sample (x) is calculated
by E2E-ASR model as following equation 1.

pprob(y) = max log P(y[x) / Ip(y) )
i) = SN e

Here, x = (1, 22, ..., x7) is acoustic features of an input
utterance and y = (y1,¥2,...,yr) is the decoded sequence
of labels by E2E-ASR model. The log-joint-probability

(log P(y|x)) is divided by the length-penalty (Ip(y)) for
the length-normalization.

3.2. Selecting Samples to Be Annotated (HLS)

Before selecting samples to be annotated from unlabeled sam-
ples, we first calculate pprob(y) over all unlabeled samples
using the current model. After calculating the probability, we
select the samples having the lowest pprob(y) as many as
a labeling budget allows, then annotate them via human ex-
perts. After the annotation, they become HLS in the training
dataset.

3.3. Comparison of Uncertainty Metrics

To verify the superiority of our uncertainty metric (pprob(y)),
we compare pprob(y) with the oracle uncertainty metrics
such as supervised loss (Loss) and performance metric (CER)
as upper bound, which require ground-truth labels, and ran-
dom sampling RND as lower bound.

Figure 2 illustrates CERs on the validation set over mod-
els trained from training subsets (i.e., five subsets as depicted
along the x-axis) where each subset is configured by equally
dividing the samples sorted in descending order according
to each uncertainty metric. That is, set5 contains top 1/5
uncertain samples and sets; contains bottom 1/5 uncer-
tain samples for each uncertainty metric. Hence, CERs from
models trained with each set, |5 represent the lowest CER for
each metric with 1/5 labeled samples. As seen in Figure 2,
pprob(y) shows the lowest CER at set;|5 and it also shows
the expected CER changes across five subsets where CER
monotonically increases as less uncertain subsets are used
for training. In contrast to pprob(y), CER and RND show
the unexpected changes across the subsets since they might
not measure a joint probability of decoded labels, instead
just measuring the discrepancy of predictions w.r.t ground-
truth without considering the dependency between labels in a
sequence.

4. SEMI-SUPERVISED LEARNING WITH
CONSISTENCY REGULARIZATION

4.1. Pseudo-Labeling

To boost the training efficiency over AL in section 3, we
exploit the samples which are not selected for HLS and re-
mained in unlabeled state. Since they do not have labels and
there is no additional budget for labeling after annotating
HLS, we generate pseudo-label for each sample by model.
We use the most probable decoded labels (y) defined in
equation 3 as pseudo-label for a sample.

y = argmax log P(y|x) / Ip(y) 3
y



However, the pseudo-labels are likely to be not only
less informative but noisy compared to labels of HLS, so
PLS would not contribute to model training, or it rather hin-
ders model performance by giving incorrect information to
model [32]. Therefore, we decide to introduce consistency
regularization on PLS in model training. It means that E2E-
ASR models should predict consistent decoded labels (y),
regardless of whether data augmentations are applied to PLS
or not.

4.2. Data Augmentation for Utterances

Basically, applying effective data augmentations on training
samples improves the robustness of the trained model on a
variety of sample conditions that will face in real usage, since
the model was already exposed on extensive distortions dur-
ing training. However, to achieve such an effect, data aug-
mentations should maintain the essential semantics of sam-
ples that determining their labels while maximally distorting
non-essential parts as possible.

Contrary to images where reshaping operations such as
scaling, flipping, and rotating hardly change the essential se-
mantics for determining labels, the essential semantics for lin-
guistic information contained in speech is much vulnerable to
such basic reshaping operations [33]. Furthermore, the faults
in an early part of decoding incur subsequent faults in the fol-
lowing decoding processing.

Because of such reasons, effective data augmentations for
utterances are a critical part to adopt CR for ASR. Therefore,
we examine two acoustic-specific augmentations; changing
playing speed (SPEED) [34] and pitch-shifting (PITCH) [33],
which effectively improve the robustness of ASR models
while not destructing the essential semantics of utterances.
In addition, domain-independent data augmentations such
as adding white noise to a sample and randomly masking
parts of a sample [35] are also considered, so we examine
two additional data augmentations; Adding White Gaussian
Noise (AWGN) and Specaugment [6] showing significant
improvement in E2E-ASR training.

4.3. Consistency Regularization Loss

CR can be realized by adding an unsupervised training ob-
jective (i.e., loss, Lo r) for training. Such objective plays
a role of regularization against existing supervised train-
ing objective (Lsyp), thus complementing the supervised
training objective for better robustness and generalization
performance [7]. Therefore, we conjecture that Lo would
alleviate the side-effects incurred by Lsy p on PLS with noisy
pseudo-labels.

As mentioned before, our resultant training objective con-
sists of two objectives: the supervised loss (Lsyp) on both
HLS and PLS and the unsupervised loss (Lcr) on PLS. The
supervised loss is defined in equation 4 following the standard

cross-entropy (H) loss as did in [1].
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where B is the size of mini-batch, and L,, is the length of n-
th sample. y,, ; represents ground-truth labels in form of hard
label and P(9y, 1|Xn ) represents the posterior probability from
the model.

The unsupervised loss is also defined in equation 5.

1 B L,
Lon=—5—— 2. Hni, PnilA(xa) )
Zn:l L"L n=1[=1

It measures the inconsistency using cross-entropy (H) be-
tween pseudo-labels (¥, ;) from genuine input features (xn)
and their predictions (P (gn,|A(xxn))) from augmented input
features (A(xy)). Note that we augment input features (xy)
with augmentation function (A) and we update pseudo-labels
continuously per predefined period (A) in epoch while ex-
pecting that the noisiness of pseudo-labels will decrease as
the training proceeds.

By integrating the supervised loss and the unsupervised
loss, the resultant loss is defined as in equation 6

L=~Lsup+ Acr (6)

where ) is scaling constant for the unsupervised loss.

5. EVALUATION

5.1. Experiment Setup

Sample Pool: We validate the efficacy of our proposed
training pipeline boosting AL on the real-world environment
where unlabeled samples are redundant and the labeling bud-
get is constrained. To reflect such an environment in our
experiments, we prepare a sample pool containing 496 hours
of samples collected from being deployed end-user applica-
tions. Firstly, we extract the 110 hours samples, which are
collected ahead of the other samples, from the sample pool
as initial dataset and annotate them to train a initial model.
The left 386 hours samples are unlabeled and will be used
as either of HLS or PLS according to the proposed training
pipeline. Additionally, we prepare 56 hours of samples col-
lected after the sample pool for a test. Note that we always
include the initial dataset in training sets.

Model: Our model follows a variant version of LAS [1]
model proposed in [36]. We stack three layers of bidirectional-
LSTM for an encoder and two layers of unidirectional-LSTM
for a decoder with location-aware attention module [37]. The
hidden size of all LSTMs is set to 512. We generate spec-
trograms from the samples using the hamming window with
200ms window-length, 100ms stride-length, then use them
as the input acoustic features.



Table 1: Measured CER (%) (Lower is better) on test dataset over various labeling budgets, which are represented by the portion
out of total unlabeled samples (Initial: use only the initial dataset, Full Budget: labeling all unlabeled samples). The columns
represent the training pipelines ‘HLS’ denotes the case only using HLS, ‘+PLS’ denotes the case joining PLS in training without
CR loss and, ‘+PLS-7" means adding the preliminary filtering with a threshold on ‘+PLS’. ‘+CR-X" denotes adding CR loss

with X augmentation for PLS.

Labeling Budget | Initial | HLS | +PLS

+PLS-7 | +CR-S

+CR-P +CR-A  +CR-SA | Full Budget

38.6h (1/10) | | 12.07 | 1897  17.82 | 1095 11.03  10.77 10.53 |
57.0n(1/7) | 1560 | 11.41 | 1805  17.65 | 10.61  10.61  10.46 1040 | 874
77.0n (1/5) | | 10.70 | 1746 1549 | 1021 1035  10.09 9.86 |
137.0h (1/3) | | 996 | 1495 1138 | 980 979  9.80 9.56 |

Training: For model training, we utilized ADAM optimizer
with a learning rate 0.003 for the initial model training and
0.001 for later training pipeline with 512(B)-sized mini-
batches. The learning rate was divided by 1.1 for every epoch
over 50 epochs for initial model training and 30 epochs for
the other parts of the training pipeline. The norm of gradients
was clipped to 400 for training stability. Furthermore, we
applied SpecAugment [6] to the initial dataset during training
initial model, but stopped using it after then since it adds un-
pleasant instability during training with noisy pseudo-labels.
To prevent an unrecovered degradation caused by abnormal
samples, we cut the unlabeled samples whose uncertainty
(pprob(y)) exceeding the predefined threshold (7) when it is
required and call it preliminary filtering.

Augmentations: When applying CR, we used four aug-
mentation techniques configured in section 4.2; SPEED (S),
PITCH (P), AWGN (A), and SpecAugment (SA). They dis-
tort the samples by fast-forwarding 1.5x, shifting two half-
steps when an octave is divided into twelve half-steps, adding
Gaussian noise with SNR=5, and masking spectrograms with
(40, 27, 2, 2) hyperparameters which are the width of time
masking and frequency masking, the number of time masks,
and the number of frequency masks, respectively.

5.2. Comparison of Training Pipeline

The training pipelines we compare here are using only HLS
(HLS), appending PLS without CR (+PLS and +PLS-7), and
with CR (CR-{+S, A, P, SA}, Ours) across the various la-
beling budgets represented by the portion of total unlabeled
samples. So, the samples up to the labeling budget from the
unlabeled dataset become HLS and the others become PLS.
We use A = 1 and A = 1 here, which were set to utilize PLS
aggressively in training.

Table 1 summarizes the resultant CERs measured over
pipelines. Firstly, we can see that the proposed +CR-Xs out-
perform the other pipelines over every labeling budgets, and
especially +CR-SA achieves the best CERs among +CR-Xs.
Secondly, we can see that +PLS achieves the worse CERs
than those of HLS in all labeling budgets even it sees addi-

tional samples (i.e. PLS) during training. It explains our hy-
pothesis mentioned in section 4.1 that noisy pseudo-labeled
samples rather hinders the model training. To resolve such
a problem, we try adopting the preliminary filtering men-
tioned at section 4.3 to filter out the samples having too noisy
pseudo-labels, so +PLS-7 with 7 = —0.5 achieves the better
CERs, but it still is worse than those of our proposed +CR-Xs
utilizing the noisy samples effectively other than abandoning
them. We discuss this observation in the following subsection.

The gains of +CR-Xs over the other pipelines are impres-
sive as the labeling budget is smaller. For example, +CR-SA
reduces 1.54%p with 1/10 budget, but only reduced 0.4%p
with 1/3 budget compared to HLS. That is because the por-
tion of PLS is more dominant under less labeling budget.

5.3. Efficacy of Consistency Regularization

We conjectured that consistency regularization alleviates
side-effects from noisy pseudo-labeled samples. To verify
the conjecture, we analyze the error (P-CER) of generated
pseudo-labels over the various periods, which is measured
by computing CER between pseudo-labels and ground-truth
labels.

Figure 3 shows P-CER over training epochs. We can see
that +PLS and +PLS-7 have the apparently worse P-CER than
those of +CR-Xs and this relationship resembles that of CERs
reported in Table 1. Moreover, P-CER of +PLS does not show
any improvement throughout training epochs. Such observa-
tions have confirmed that utilizing noisy pseudo-labels does
not directly improve training efficiency. When we apply the
preliminary filtering on +PLS, +PLS-7 shows the better P-
CER and promising dynamics in 1/3 labeling budget, but it
does not work in the case of 1/10 labeling budget where the
more difficult samples have remained in the unlabeled dataset.
On the other hand, the goodness of P-CER for +CR-Xs sup-
ports the conjecture that CR loss in training objectives reg-
ularize the supervised loss, thus alleviating the side-effects
caused by noisy pseudo-labels.
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Fig. 3: The error of pseudo-labels (P-CER) measured in CER
(%) with (a) 1/7 and (b) 1/3 of labeling budget.

5.4. Heterogeneous Domains

We also verify the efficacy of our proposed training pipeline
on the more realistic and harsh environment where the do-
mains of the initial dataset and unlabeled dataset are signif-
icantly different; AIAsst (Al Assistant) and MapNavi (Map
Navigation Voice Control). To this end, we configure an ini-
tial dataset (443h) from AIAsst, an unlabeled dataset (366h),
and a test dataset (33.2h) from MapNavi. They have a lot of
different vocabulary. For example, MapNavi contains many
nouns for addresses not included in AIAsst.

As shown in table 2, the initial model (Initial) could not
handle MapNavi samples since it was only exposed to the
samples from a very different domain, AIAsst. However, sup-
ported by small HLS and our proposed training pipeline, the
model restored its performance close to that of the full budget
where all samples from MapNavi were used. The used train-
ing pipeline was +CR-SA-7, which applying the preliminary
filtering with 7 = —0.5 to +CR-SA by considering the harsh-
ness of heterogeneous domains.

5.5. Frequency of Pseudo-Labeling

The pseudo-labeling procedure takes a large portion of total
training time since it contains the computationally intensive
beam-search decoding. Therefore, we consider the periodic

Table 2: Measured CER(%) on test dataset from MapNavi
when the initial and the unlabeled dataset consist of samples
from AIAsst and MapNavi, respectively.

Labeling Budget | Initial | +CR-SA-7 | Full Budget

38.6h (1/10) | | 10.62 |
57.0h (1/7) | 49.25 | 927 | 7.5
77.0h (1/5) \ \ 8.58 \
137.0h (1/3) \ \ 7.74 \
16 —— 1 Epoch
3 Epoch
14 —— 5 Epoch
9
X 12
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Fig. 4: The error of pseudo-labels (P-CER) over periods (A)
for pseudo-labeling using +CR-SA and 1/10 labeling budget.

pseudo-labeling, which reduces the number of beam-search
decoding. Figure 4 shows that the dynamics of CERs on test
dataset with 1/10 labeling budget on several periods (A) (1, 3,
and 5 epochs) and we can confirm that the degradation with
a longer period is marginal (0.2%p difference between A =
1 and A = 5) as the training epochs proceeds even though
we use the strongly constrained labeling budget. So, we can
efficiently tradeoff freshness of pseudo-labels with training
time when the amount of unlabeled samples is too large.

6. CONCLUSIONS

In this paper, we proposed the training pipeline boosting
active learning under constrained labeling budget by incor-
porating semi-supervised learning with pseudo-labeling and
consistency regularization. We showed that consistency reg-
ularization with well-configured augmentations effectively
exploited unlabeled samples, which are not considered in
active learning, by regulating the side-effects caused by noisy
pseudo-labels. Our proposed training pipeline (+CR-SA) im-
proved CERs by 12.76% and 4.02% compared to active learn-
ing (HLS) when labeling budgets cover 1/3 and 1/10 of total
unlabeled samples, respectively. Moreover, we achieve the
competitive performance (0.82%p worse) with 1/3 amount of
samples (137 vs 386 hours). We highlight that this is the first
work adopting the consistency regularization into ASR task
and the results present the potential to remarkably reduce the
performance degradation with insufficient labeling budget.
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